• Title/Summary/Keyword: Keratinase

Search Result 29, Processing Time 0.021 seconds

Keratinolytic Activity of Five Aspergillus Species Isolated from Poultry Farming Soil in Korea

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.31 no.3
    • /
    • pp.157-161
    • /
    • 2003
  • Various soil samples were collected from twenty-four areas of ten different poultry farms in Korea and screened for prevalence of keratinolytic fungi. Fourteen species of feather-associated fungi belonging to ten genera Acremonium, Alternaria, Aspergillus, Cladosporium, Curvularia, Fusarium, Monascus, Mucor, Penicillum, and Verticillium isolated from poultry soils were grown on keratin medium. Especially, Aspergillus spp. populations associated with the soil sample is $1{\times}10^5$ cfu/g. A. flavus, A. fumigatus, A. niger, A. nidulans, and A. terreus could utilize keratin of chicken feather and degrade it, producing sulphydryl-containing compounds detected as keratinase, cysteine and total proteins. Keratinolytic activities of five Aspergillus species also changed the pH of the medium more alkaline than those that were less keratinolytic.

Isolation, Identification, and Characterization of a Keratin-degrading Bacterium Chryseobacterium sp. P1-3

  • Hong, Sung-Jun;Park, Gun-Seok;Jung, Byung Kwon;Khan, Abdur Rahim;Park, Yeong-Jun;Lee, Chang-Hyun;Shin, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.247-251
    • /
    • 2015
  • In this study, a keratin-degrading bacterium was isolated from soil contaminated with feather waste. The isolated strain was identified as Chryseobacterium sp. P1-3 on the basis of the 16S rRNA gene sequence alignment. Chryseobacterium sp. P1-3 is currently used in various biotechnological applications (e.g., in the hydrolysis of poultry feathers). It hydrolyzed the feather meal within 2 days and possesses a high level of keratinase activity (98 U/mL). The keratinase, partially purified from this strain, prefers casein as a substrate and shows optimal activity at a temperature of $30^{\circ}C$ and at a pH of 8.0.

Effect of keratinase on ileal amino acid digestibility in five feedstuffs fed to growing pigs

  • Huang, Chengfei;Ma, Dongli;Zang, Jianjun;Zhang, Bo;Sun, Brian;Liu, Ling;Zhang, Shuai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1946-1955
    • /
    • 2018
  • Objective: This study was conducted to evaluate the effect of keratinase (KE) on the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of amino acids (AA) in rice bran, cottonseed meal (CSM), rapeseed meal (RSM), corn distillers dried grains with solubles (DDGS), and peanut meal (PNM). Methods: Twelve crossbred barrows (Duroc${\times}$Landrace${\times}$Yorkshire, $50.5{\pm}1.4kg$ body weight [BW]) fitted with T-cannulas at the terminal ileum were allotted to a $12{\times}6$ Youden Square design with 12 diets and 6 periods. The treatment diets included rice bran, CSM, RSM, corn DDGS, PNM, or corn-soybean meal (cSBM) supplemented with 0.05% KE or not. Diets were given to pigs at a level of 3% BW in two equal meals. The endogenous AA losses were the mean results of three previously experiments determined by a same nitrogen-free diet fed to pigs. Pigs had free access to water during the experiment. Results: The KE supplementation improved (p<0.05) the AID and SID of Met, Thr, Val, Asp, Cys, and Tyr in rice bran. Inclusion of KE increased (p<0.05) the AID and SID of Met and Val in CSM. The KE supplementation decreased (p<0.05) the AID and SID of His in RSM and all measured AA except for Arg, Met, Trp, Val, Gly, and Pro in corn DDGS. There was an increase (p<0.05) in AID and SID of Leu, Ile, Met, Ala, Cys, Ser, and Tyr in PNM supplemented with KE compared with that without KE. Inclusion of KE increased (p<0.05) the AID and SID of crude protein, Leu, Ile, Phe, Thr, Asp, and Ser in cSBM. Conclusion: This study indicated that KE had different effects on ileal AA digestibility of feedstuffs for growing pigs, which can give some usage directions of KE in swine feed containing those detected feedstuffs.

Shrinkproofing of Wool Fabrics by Pulse Corona Discharge and Enzymes

  • Cho, Sung-Mi;Toru Takagishi;Mitsuru Tahara
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.96-96
    • /
    • 2003
  • In this article modification of wool fibers and fabrics by pulse corona discharge and enzymes, in particular purified keratinase with a single component has been carried out to improve their surface properties. The shrinkproofing, tensile strength, weight loss, and the primary hand values calculated from the mechanical properties of the dual treated wool fabrics were investigated. In addition, the surface morphology of wool fiber was observed under the dry and wet conditions using an environmental SEM, ESEM.

  • PDF

Immobilization of Keratinolytic Metalloprotease from Chryseobacterium sp. Strain kr6 on Glutaraldehyde-Activated Chitosan

  • Silveira, Silvana T.;Gemelli, Sabrine;Segalin, Jeferson;Brandelli, Adriano
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.818-825
    • /
    • 2012
  • Keratinases are exciting keratin-degrading enzymes; however, there have been relatively few studies on their immobilization. A keratinolytic protease from Chryseobacterium sp. kr6 was purified and its partial sequence determined using mass spectrometry. No significant homology to other microbial peptides in the NCBI database was observed. Certain parameters for immobilization of the purified keratinase on chitosan beads were investigated. The production of the chitosan beads was optimized using factorial design and surface response techniques. The optimum chitosan bead production for protease immobilization was a 20 g/l chitosan solution in acetic acid [1.5% (v/v)], glutaraldehyde ranging from 34 g to 56 g/l, and an activation time between 6 and 10 h. Under these conditions, above 80% of the enzyme was immobilized on the support. The behavior of the keratinase loading on the chitosan beads surface was well described using the Langmuir model. The maximum capacity of the support ($q_m$) and dissociation constant ($K_d$) were estimated as 58.8 U/g and 0.245 U/ml, respectively. The thermal stability of the immobilized enzyme was also improved around 2-fold, when compared with that of the free enzyme, after 30 min at $65^{\circ}C$. In addition, the activity of the immobilized enzyme remained at 63.4% after it was reused five times. Thus, the immobilized enzyme exhibited an improved thermal stability and remained active after several uses.

퇴비에서 분리한 우모(牛毛) 분해균 Bacillus pumilis RS7에 의한 우모분해산물이 식물성장에 미치는 영향

  • U, Eun-Ok;Yu, Eun-Yeon;Kim, Mi-A;Kim, Yeong-Hun;Son, Hong-Ju;Lee, Sang-Jun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.11a
    • /
    • pp.432-435
    • /
    • 2006
  • 전 세계적으로 방대하게 배출되는 도축 부산물인 우모는 높은 영양적 가치를 가짐에도 불구하고 현재 사용하는 물리화학적 처리법의 여러 단점으로 효율적으로 이용되지 못하고 있는 실정이다. 그 결과 2차 오염을 발생시키지 않는 경제적 방법인 생물학적 처리에 대한 연구의 필요성이 커지고 있다. 본 연구에서는 그러한 방법 중 대표적인 방법으로 미생물이 생산하는 keratinase를 이용한 생분해에 대해 연구를 하기 위해 경남 일대 퇴비화 볏짚에서 keratinolytic protease 생성능이 우수한 균주인 RS7을 분리하였고 생화학적 동정법과 16S rDNA를 이용한 동정결과 B. pumilus로 동정되었다. 본 실험에서 분리된 B. pumilus는 기존에 활발히 연구되어 있지 않는 균주로써 native feather 분해도가 기존에 알려진 Bacillus 속들이 3일 정도에서 분해 완료되는 것과는 달리 36시간 ${\sim}$48시간 내에 깃대까지 완전히 분해하였다. 또한 분리 균주의 경제적인 분해능을 토대로 분해산물이 식물 생장에 주는 영향과 아미노산 함유량을 검토한 결과 기존의 화학적 분해에 의한 분해산물보다 아미노산 함유량이 4배가량 많았으며 식물 생장에 있어서도 생장율과 개화시점으로 미루어볼 때 비료로써의 역할을 수행할 수 있었다.

  • PDF

Isolation and Characterization of a Feather Degrading Alkalophilic Streptomyces sp. TBG-S13A5 and its Keratinolytic Properties

  • Indhuja, Selvaraj;Shiburaj, Sugathan;Pradeep, Nediyaparambu Sukumaran;Thankamani, Vaidyanathan;Abraham, Teruvath Koshy
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.303-309
    • /
    • 2012
  • Keratinases are of particular interest because of their action on insoluble keratins and generally on a broad range of protein substrates. Alkalophilic and neutrophilic actinomycete strains isolated from different soil samples, rich in keratinaceous substances were screened for keratinolytic activity. An alkalophilic isolate, TBG-S13A5, was found to possess good keratinolytic activity and was able to utilize feather as the sole carbon and nitrogen source. TBG-S13A5 exhibited an off-white aerial mass color with a rectus-flexibilis type of spore chain. The morphological, microscopical and biochemical characters were comparable with that of Streptomyces albidoflavus. Fatty acid methyl ester profiling (FAME) and 16S rDNA sequence analysis confirmed its identity as a strain of S. albidoflavus. Under submerged fermentation conditions, maximum protease production was recorded on the $5^{th}$ day of incubation at $30^{\circ}C$, using basal broth of pH 9.0 with 0.25% (w/v) white chicken feather. This strain could affect feather degradation when the initial pH was 8 and above and maximum protease production was recorded when the initial pH was around 10.5. The effectiveness of the crude enzyme in destaining and leather dehairing were also demonstrated.

Functional Properties of Egg Shell Membrane Hydrolysate as a Food Material (난각막 분해물의 식품 소재로서 기능적 특성)

  • 전태욱;박기문
    • Food Science of Animal Resources
    • /
    • v.22 no.3
    • /
    • pp.267-273
    • /
    • 2002
  • The functional properties of egg shell membrane hydrolysate by Bacillus licheniformis(EESMH) and NaOH-ethanol(AESMH) as a food material were investigated.. The yield of egg shell membrane hydrolysate was about 15% by Bacillus licheniformis, whereas that was 70% by NaOH-ethanol. Histidine content was higher in EESMH (18.69%) than in AESMH (2.56%). Both EESMH and AESMH showed high protein solubility (>95%). Emulsi-fying activity and stability of EESMH were higher than those of AESMH. foaming capacity and stability of AESMH were 2 times higher than those of EESMH in the pH ranges from 2 to 12. The AESMH had antioxidative activity whereas EESMH had not. Therefore, both AESMH and EESMH can be used for industrial food materials from the results of functional properties.