• 제목/요약/키워드: Keras Deep Neural Network

검색결과 33건 처리시간 0.023초

Introduction to convolutional neural network using Keras; an understanding from a statistician

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제26권6호
    • /
    • pp.591-610
    • /
    • 2019
  • Deep Learning is one of the machine learning methods to find features from a huge data using non-linear transformation. It is now commonly used for supervised learning in many fields. In particular, Convolutional Neural Network (CNN) is the best technique for the image classification since 2012. For users who consider deep learning models for real-world applications, Keras is a popular API for neural networks written in Python and also can be used in R. We try examine the parameter estimation procedures of Deep Neural Network and structures of CNN models from basics to advanced techniques. We also try to figure out some crucial steps in CNN that can improve image classification performance in the CIFAR10 dataset using Keras. We found that several stacks of convolutional layers and batch normalization could improve prediction performance. We also compared image classification performances with other machine learning methods, including K-Nearest Neighbors (K-NN), Random Forest, and XGBoost, in both MNIST and CIFAR10 dataset.

이미지 분류를 위한 딥러닝 기반 CNN모델 전이 학습 비교 분석 (CNN model transition learning comparative analysis based on deep learning for image classification)

  • 이동준;전승제;이동휘
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.370-373
    • /
    • 2022
  • 최근 Tensorflow나 Pytorch, Keras 같은 여러가지의 딥러닝 프레임워크 모델들이 나왔다. 또한 이미지 인식에 Tensorflow, Pytorch, Keras 같은 프레임 워크를 이용하여 CNN(Convolutional Neural Network)을 적용시켜 이미지 분류에서의 최적화 모델을 주로 이용한다. 본 논문에서는 딥러닝 이미지 인식분야에서 가장 많이 사용하고 있는 파이토치와 텐서플로우의 프레임 워크를 CNN모델에 학습을 시킨 결과를 토대로 두 프레임 워크를 비교 분석하여 이미지 분석할 때 최적화 된 프레임워크를 도출하였다.

  • PDF

LSTM Network with Tracking Association for Multi-Object Tracking

  • Farhodov, Xurshedjon;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1236-1249
    • /
    • 2020
  • In a most recent object tracking research work, applying Convolutional Neural Network and Recurrent Neural Network-based strategies become relevant for resolving the noticeable challenges in it, like, occlusion, motion, object, and camera viewpoint variations, changing several targets, lighting variations. In this paper, the LSTM Network-based Tracking association method has proposed where the technique capable of real-time multi-object tracking by creating one of the useful LSTM networks that associated with tracking, which supports the long term tracking along with solving challenges. The LSTM network is a different neural network defined in Keras as a sequence of layers, where the Sequential classes would be a container for these layers. This purposing network structure builds with the integration of tracking association on Keras neural-network library. The tracking process has been associated with the LSTM Network feature learning output and obtained outstanding real-time detection and tracking performance. In this work, the main focus was learning trackable objects locations, appearance, and motion details, then predicting the feature location of objects on boxes according to their initial position. The performance of the joint object tracking system has shown that the LSTM network is more powerful and capable of working on a real-time multi-object tracking process.

Deep learning classifier for the number of layers in the subsurface structure

  • Kim, Ho-Chan;Kang, Min-Jae
    • International journal of advanced smart convergence
    • /
    • 제10권3호
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, we propose a deep learning classifier for estimating the number of layers in the Earth's structure. When installing a grounding system, knowledge of the subsurface in the area is absolutely necessary. The subsurface structure can be modeled by the earth parameters. Knowing the exact number of layers can significantly reduce the amount of computation to estimate these parameters. The classifier consists of a feedforward neural network. Apparent resistivity curves were used to train the deep learning classifier. The apparent resistivity at 20 equally spaced log points in each curve are used as the features for the input of the deep learning classifier. Apparent resistivity curve data sets are collected either by theoretical calculations or by Wenner's measurement method. Deep learning classifiers are coded by Keras, an open source neural network library written in Python. This model has been shown to converge with close to 100% accuracy.

Multi-type Image Noise Classification by Using Deep Learning

  • Waqar Ahmed;Zahid Hussain Khand;Sajid Khan;Ghulam Mujtaba;Muhammad Asif Khan;Ahmad Waqas
    • International Journal of Computer Science & Network Security
    • /
    • 제24권7호
    • /
    • pp.143-147
    • /
    • 2024
  • Image noise classification is a classical problem in the field of image processing, machine learning, deep learning and computer vision. In this paper, image noise classification is performed using deep learning. Keras deep learning library of TensorFlow is used for this purpose. 6900 images images are selected from the Kaggle database for the classification purpose. Dataset for labeled noisy images of multiple type was generated with the help of Matlab from a dataset of non-noisy images. Labeled dataset comprised of Salt & Pepper, Gaussian and Sinusoidal noise. Different training and tests sets were partitioned to train and test the model for image classification. In deep neural networks CNN (Convolutional Neural Network) is used due to its in-depth and hidden patterns and features learning in the images to be classified. This deep learning of features and patterns in images make CNN outperform the other classical methods in many classification problems.

A Deep Learning Model for Extracting Consumer Sentiments using Recurrent Neural Network Techniques

  • Ranjan, Roop;Daniel, AK
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.238-246
    • /
    • 2021
  • The rapid rise of the Internet and social media has resulted in a large number of text-based reviews being placed on sites such as social media. In the age of social media, utilizing machine learning technologies to analyze the emotional context of comments aids in the understanding of QoS for any product or service. The classification and analysis of user reviews aids in the improvement of QoS. (Quality of Services). Machine Learning algorithms have evolved into a powerful tool for analyzing user sentiment. Unlike traditional categorization models, which are based on a set of rules. In sentiment categorization, Bidirectional Long Short-Term Memory (BiLSTM) has shown significant results, and Convolution Neural Network (CNN) has shown promising results. Using convolutions and pooling layers, CNN can successfully extract local information. BiLSTM uses dual LSTM orientations to increase the amount of background knowledge available to deep learning models. The suggested hybrid model combines the benefits of these two deep learning-based algorithms. The data source for analysis and classification was user reviews of Indian Railway Services on Twitter. The suggested hybrid model uses the Keras Embedding technique as an input source. The suggested model takes in data and generates lower-dimensional characteristics that result in a categorization result. The suggested hybrid model's performance was compared using Keras and Word2Vec, and the proposed model showed a significant improvement in response with an accuracy of 95.19 percent.

이중 동종 CNN 구조를 이용한 ASL 알파벳의 이미지 분류 (Classifying Images of The ASL Alphabet using Dual Homogeneous CNNs Structure)

  • 어니요조브 쇼크루크;권만성;박성종;김광준
    • 한국전자통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.449-458
    • /
    • 2023
  • 많은 사람들이 수화는 청각 장애가 있고 말을 할 수 없는 사람들을 위한 것이라고 생각하지만 물론 그들과 대화하고 싶은 사람들에게 필요하다. ASL(: American Sign Language) 알파벳 인식에서 가장 큰 문제 중 하나는 높은 클래스 간 유사성과 높은 클래스 내 분산이다. 본 논문에서는 이 두 가지 문제점을 극복할 수 있는 유사도 학습을 수행하여 이미지 간의 클래스 간 유사도와 클래스 내 분산을 줄이는 아키텍처를 제안하였다. 제안된 아키텍처는 매개변수(가중치 및 편향)를 공유하는 이중으로 구성된 동일한 컨벌루션 신경망으로 구성하고 또한 이 경로를 통해 유사도 학습과 분산을 줄이는 Keras API를 적용하였다. 이중 동종 CNN을 사용한 유사성 학습 결과는 두 클래스의 좋지 않은 결과를 포함하지 않음으로써 클래스 간 유사성과 변동성을 줄임으로서 정확도가 개선된 결과를 나타내고 있다.

Understanding recurrent neural network for texts using English-Korean corpora

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제27권3호
    • /
    • pp.313-326
    • /
    • 2020
  • Deep Learning is the most important key to the development of Artificial Intelligence (AI). There are several distinguishable architectures of neural networks such as MLP, CNN, and RNN. Among them, we try to understand one of the main architectures called Recurrent Neural Network (RNN) that differs from other networks in handling sequential data, including time series and texts. As one of the main tasks recently in Natural Language Processing (NLP), we consider Neural Machine Translation (NMT) using RNNs. We also summarize fundamental structures of the recurrent networks, and some topics of representing natural words to reasonable numeric vectors. We organize topics to understand estimation procedures from representing input source sequences to predict target translated sequences. In addition, we apply multiple translation models with Gated Recurrent Unites (GRUs) in Keras on English-Korean sentences that contain about 26,000 pairwise sequences in total from two different corpora, colloquialism and news. We verified some crucial factors that influence the quality of training. We found that loss decreases with more recurrent dimensions and using bidirectional RNN in the encoder when dealing with short sequences. We also computed BLEU scores which are the main measures of the translation performance, and compared them with the score from Google Translate using the same test sentences. We sum up some difficulties when training a proper translation model as well as dealing with Korean language. The use of Keras in Python for overall tasks from processing raw texts to evaluating the translation model also allows us to include some useful functions and vocabulary libraries as well.

이산 Wavelet 변환을 이용한 딥러닝 기반 잡음제거기 (Noise Canceler Based on Deep Learning Using Discrete Wavelet Transform)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1103-1108
    • /
    • 2023
  • 본 논문에서는 음향신호의 배경잡음을 감쇠하기 위한 새로운 알고리즘을 제안한다. 이 알고리즘은 이산 웨이블릿 변환(DWT: Discrete Wavelet Transform) 후 기존의 적응필터를 대신 FNN(: Full-connected Neural Network) 심층학습 알고리즘을 이용하여 잡음감쇠 성능을 개선하였다. 입력신호를 단시간 구간별로 웨이블릿 변환한 다음 1024-1024-512-neuron FNN 딥러닝 모델을 이용하여 잡음이 포함된 단일입력 음성신호로부터 잡음을 제거한다. 이는 시간영역 음성신호를 잡음특성이 잘 표현되도록 시간-주파수영역으로 변환하고 변환 파라미터에 대해 순수 음성신호의 변환 파라미터를 이용한 지도학습을 통하여 잡음환경에서 효과적으로 음성을 예측한다. 본 연구에서 제안한 잡음감쇠시스템의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 심층학습 알고리즘을 사용하면 기존의 적응필터를 사용하는 경우보다 30%, STFT(: Short-Time Fourier Transform) 변환을 사용하는 경우보다는 20%의 평균자승오차(MSE: Mean Square Error) 개선효과를 얻을 수 있었다.

딥러닝을 이용한 연안 소형 어선 주요 치수 추정 연구 (A study on estimating the main dimensions of a small fishing boat using deep learning)

  • 장민성;김동준;자오양
    • 수산해양기술연구
    • /
    • 제58권3호
    • /
    • pp.272-280
    • /
    • 2022
  • The first step is to determine the principal dimensions of the design ship, such as length between perpendiculars, beam, draft and depth when accomplishing the design of a new vessel. To make this process easier, a database with a large amount of existing ship data and a regression analysis technique are needed. Recently, deep learning, a branch of artificial intelligence (AI) has been used in regression analysis. In this paper, deep learning neural networks are used for regression analysis to find the regression function between the input and output data. To find the neural network structure with the highest accuracy, the errors of neural network structures with varying the number of the layers and the nodes are compared. In this paper, Python TensorFlow Keras API and MATLAB Deep Learning Toolbox are used to build deep learning neural networks. Constructed DNN (deep neural networks) makes helpful in determining the principal dimension of the ship and saves much time in the ship design process.