• Title/Summary/Keyword: Keras 심층 신경망

Search Result 8, Processing Time 0.024 seconds

이중 동종 CNN 구조를 이용한 ASL 알파벳의 이미지 분류 (Classifying Images of The ASL Alphabet using Dual Homogeneous CNNs Structure)

  • 어니요조브 쇼크루크;권만성;박성종;김광준
    • 한국전자통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.449-458
    • /
    • 2023
  • 많은 사람들이 수화는 청각 장애가 있고 말을 할 수 없는 사람들을 위한 것이라고 생각하지만 물론 그들과 대화하고 싶은 사람들에게 필요하다. ASL(: American Sign Language) 알파벳 인식에서 가장 큰 문제 중 하나는 높은 클래스 간 유사성과 높은 클래스 내 분산이다. 본 논문에서는 이 두 가지 문제점을 극복할 수 있는 유사도 학습을 수행하여 이미지 간의 클래스 간 유사도와 클래스 내 분산을 줄이는 아키텍처를 제안하였다. 제안된 아키텍처는 매개변수(가중치 및 편향)를 공유하는 이중으로 구성된 동일한 컨벌루션 신경망으로 구성하고 또한 이 경로를 통해 유사도 학습과 분산을 줄이는 Keras API를 적용하였다. 이중 동종 CNN을 사용한 유사성 학습 결과는 두 클래스의 좋지 않은 결과를 포함하지 않음으로써 클래스 간 유사성과 변동성을 줄임으로서 정확도가 개선된 결과를 나타내고 있다.

신경망 구조의 적응 Wiener 필터를 이용한 비선형 잡음감쇠기 (Nonlinear Noise Attenuator by Adaptive Wiener Filter with Neural Network)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.71-76
    • /
    • 2023
  • 본 논문은 음향잡음감쇠기에서 신경망 구조의 Wiener 필터를 이용하여 비선형 잡음을 감쇠시키는 방법에 대하여 연구하였다. 이 시스템은 기존의 적응필터를 이용하는 대신 신경망 위너필터를 이용한 심층학습 알고리즘으로 비선형 잡음감쇠 성능을 개선한다. 128-neuron, 8-neuron 은닉층과 오차 역전파(back propagation) 알고리즘을 이용하여 비선형 잡음이 포함된 단일입력 음성신호로부터 음성을 추정한다. 본 연구에서 비선형 잡음에 대한 감쇠 성능을 검증하기 위하여 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 모의실험 결과, 본 시스템은 비선형 잡음이 포함되어 있는 경우에도 위너필터 대신 FNN 필터를 사용하면 잡음감쇠 성능이 상당히 개선되는 것을 볼 수 있다. 이는 FNN 필터의 복잡한 구조가 어떤 형태의 비선형 특성도 잘 표현하기 때문이다.

CNN 잡음감쇠기에서 필터 수의 최적화 (Optimization of the Number of Filter in CNN Noise Attenuator)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.625-632
    • /
    • 2021
  • 본 논문은 잡음감쇠기에서 CNN(Convolutional Neural Network) 계층의 필터 수가 성능에 미치는 영향을 연구하였다 이 시스템은 적응필터 대신 신경망 예측필터를 이용하며 심층학습방법으로 잡음을 감쇠한다. 64-뉴런, 16-커널 CNN 필터와 오차 역전파 알고리즘을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정한다. 본 연구에서 필터 수에 대한 잡음감쇠기의 성능을 검증하기 위하여 Keras 라이브러리를 사용한 프로그램을 작성하고 시뮬레이션을 실시하였다. 시뮬레이션 결과, 본 시스템은 필터 수가 16일 때 MSE(Mean Squared Error) 및 MAE(Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 필터가 4개 일 때 성능이 가장 낮은 것을 볼 수 있다. 그리고 필터가 8개 이상이 되면 필터 수에 따라 MSE 및 MAE 값이 크게 차이나지 않는 것을 보여주었다. 이러한 결과로부터 음성신호의 주요 특징을 표현하기 위해서는 약 8개 이상의 필터를 사용해야 한다는 것을 알 수 있다.

스펙트로그램을 이용한 CNN 음성인식 모델 (Speech Recognition Model Based on CNN using Spectrogram)

  • 정원석;이행우
    • 한국전자통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.685-692
    • /
    • 2024
  • 본 논문에서는 명령어 음성신호의 인식 성능을 개선하기 위한 새로운 합성곱 신경망(CNN: Convolutional Neural Network) 모델을 제안한다. 이 방법은 입력신호의 단구간 푸리에 변환(STFT: Short-Time Fourier Transform) 후 스펙트로그램 이미지를 구하고 CNN 모델을 이용한 지도학습을 통하여 명령어 인식 성능을 개선하였다. 입력신호를 단시간 구간별로 푸리에 변환한 다음 스펙트로그램 이미지를 구하고 CNN 딥러닝 모델을 이용하여 다중 분류 학습을 수행한다. 이는 시간영역 음성신호를 특성이 잘 표현되도록 주파수영역으로 변환하고 변환 파라미터에 대한 스펙트로그램 이미지를 이용하여 딥러닝 훈련을 수행함으로써 명령어를 효과적으로 분류한다. 본 연구에서 제안한 음성인식시스템의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 심층학습 알고리즘을 이용하면 92.5%의 정확도를 얻을 수 있는 것으로 확인되었다.

CNN 잡음 감쇠기에서 커널 사이즈의 최적화 (Optimization of the Kernel Size in CNN Noise Attenuator)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.987-994
    • /
    • 2020
  • 본 논문은 음향잡음감쇠기에서 CNN(: Convolutional Neural Network) 계층의 커널 사이즈가 성능에 미치는 영향을 위한 연구하였다 이 시스템은 기존의 적응필터를 이용하는 대신 신경망 적응예측필터를 이용한 심층학습 알고리즘으로 잡음감쇠 성능을 개선한다. 100-neuron, 16-filter CNN 필터와 오차 역전파(back propagation) 알고리즘을 이용하여 잡음이 포함된 단일입력 음성신호로부터 음성을 추정한다. 이는 음성신호가 갖는 유성음 구간에서의 준주기적 성질을 이용하는 것이다. 본 연구에서 커널 사이즈에 대한 잡음감쇠기의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 모의실험 결과, 커널 사이즈가 16 정도일 때 평균자승오차(MSE: Mean Square Error) 및 평균절대값오차(MAE: Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 사이즈가 이보다 더 작거나 커지면 MSE 및 MAE 값이 증가하는 것을 볼 수 있다. 이는 음성신호의 경우 커널 사이즈가 16 정도일 때 특성을 가장 잘 포집할 수 있음을 알 수 있다.

다층 퍼셉트론을 기반으로 한 대청호 수질 예측 모델 최적화 (Optimization Of Water Quality Prediction Model In Daechong Reservoir, Based On Multiple Layer Perceptron)

  • 이한규;김진휘;변서현;박강동;신재기;박용은
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.43-43
    • /
    • 2022
  • 유해 조류 대발생은 전국 각지의 인공호소나 하천에서 다발적으로 발생하며, 경관을 해치고 수질을 오염시키는 등 수자원에 부정적인 영향을 미친다. 본 연구에서는 인공호소에서 발생하는 유해 조류 대발생을 예측하기 위해 심층학습 기법을 이용하여 예측 모델을 개발하고자 하였다. 대상 지점은 대청호의 추동 지점으로 선정하였다. 대청호는 금강유역 중류에 위치한 댐으로, 약 150만명에 달하는 급수 인구수를 유지 중이기에 유해 남조 대발생 관리가 매우 중요한 장소이다. 학습용 데이터 구축은 대청호의 2011년 1월부터 2019년 12월까지 측정된 수질, 기상, 수문 자료를 입력 자료를 이용하였다. 수질 예측 모델의 구조는 다중 레이어 퍼셉트론(Multiple Layer Perceptron; MLP)으로, 입력과 한 개 이상의 은닉층, 그리고 출력층으로 구성된 인공신경망이다. 본 연구에서는 인공신경망의 은닉층 개수(1~3개)와 각각의 레이어에 적용되는 은닉 노드 개수(11~30개), 활성함수 5종(Linear, sigmoid, hyperbolic tangent, Rectified Linear Unit, Exponential Linear Unit)을 각각 하이퍼파라미터로 정하고, 모델의 성능을 최대로 발휘할 수 있는 조건을 찾고자 하였다. 하이퍼파라미터 최적화 도구는 Tensorflow에서 배포하는 Keras Tuner를 사용하였다. 모델은 총 3000 학습 epoch 가 진행되는 동안 최적의 가중치를 계산하도록 설계하였고, 이 결과를 매 반복마다 저장장치에 기록하였다. 모델 성능의 타당성은 예측과 실측 데이터 간의 상관관계를 R2, NSE, RMSE를 통해 산출하여 검증하였다. 모델 최적화 결과, 적합한 하이퍼파라미터는 최적화 횟수 총 300회에서 256 번째 반복 결과인 은닉층 개수 3개, 은닉 노드 수 각각 25개, 22개, 14개가 가장 적합하였고, 이에 따른 활성함수는 ELU, ReLU, Hyperbolic tangent, Linear 순서대로 사용되었다. 최적화된 하이퍼파라미터를 이용하여 모델 학습 및 검증을 수행한 결과, R2는 학습 0.68, 검증 0.61이었고 NSE는 학습 0.85, 검증 0.81, RMSE는 학습 0.82, 검증 0.92로 나타났다.

  • PDF

심층신경망 모형을 이용한 서울시 도시공원 및 녹지공간의 열섬저감효과 분석 (Analysis of Urban Heat Island (UHI) Alleviating Effect of Urban Parks and Green Space in Seoul Using Deep Neural Network (DNN) Model)

  • 김병찬;강재우;박찬;김현진
    • 한국조경학회지
    • /
    • 제48권4호
    • /
    • pp.19-28
    • /
    • 2020
  • 도시화로 인한 도시열섬현상(Urban Heat Island)이 심화되면서 도시차원의 열 관리가 중요한 이슈로 다뤄지고, 도시열섬현완화 방안으로 녹지사업과 환경정책이 시행되고 있고, 도시공원 및 녹지와 열의 관계를 분석하는 다수의 연구가 수행되었다. 하지만 열이라는 특성은 다수의 요인이 복합적으로 얽혀있어 선형적 상관관계를 통한 해석에 한계가 있다. 본 연구는 변수요인들이 다양하고 데이터의 양이 방대하여 기존의 통계분석방식으로는 분석하기 어려운 분야에서 강점을 갖는 심층신경망 모형 방법론을 사용하여 여름철 서울지역의 공원 및 녹지의 열섬저감효과를 평가하는 것을 목표로 연구를 진행하였다. 이를 위해서 Landsat 8 인공위성영상을 활용하여 동시간의 광역적인 데이터를 취득하였고, ArcGis 10.7을 이용하여 서울시를 30m×30m 그리드로 격자화하여, 각 격자에 열섬저감을 측정할 수 있는 환경변수를 구축하였다. Python 3.7과 Keras를 이용하여 심층신경망 모형을 생성하여 지표면 온도와 변수 간의 관계를 분석하였다. 분석 결과, 인공신경망 모형은 높은 설명력을 가지는 것을 확인하였다. 또한 일반적인 연구 결과와 마찬가지로 인접 녹지와의 거리가 가까울수록, 공원면적이 커질수록, 공원의 식생활력도가 높을수록 지표면 온도가 낮아짐을 확인하였다. 식생활력도에 의한 냉각효과가 많이 있는 것을 확인하였고, 일부 선행연구에서 녹지에 인접할수록 0.3℃ ~ 2.3℃ 저감될 수 있는 특성이 나타나고, 공원의 크기가 크면 2℃~3℃ 저감효과가 나타난다는 결과를 보이고 있는데, 본 연구결과와 비교해 보면 도출된 효과가 과대평가되었을 가능성을 확인하였다. 본 연구의 결과는 향후 도시열섬현상 완화를 위해 새로운 도시녹지를 조성시 효과적인 녹지 구성을 위한 정보로 활용될 수 있다.

광역 스펙트로그램과 심층신경망에 기반한 중첩된 소리의 인식과 영향 분석 (Recognition of Overlapped Sound and Influence Analysis Based on Wideband Spectrogram and Deep Neural Networks)

  • 김영언;박구만
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.421-430
    • /
    • 2018
  • 많은 음성인식 시스템들은 MFCC와 HMM등의 분류 기법을 사용하여 사람의 음성을 인식한다. 그러나 이러한 음성인식 시스템은 단일 음성신호를 인식하는 것을 목적으로 설계되어, 인간과 기계사이의 일대일 음성 인식에는 적합하나, 애완동물 소리와 실내 소리같은 음성보다 다양하고 넓은 주파수의 소리 군으로 중첩된 음향 속에서 설정된 소리를 인식하기에는 제한이 있다. 중첩된 소리들의 주파수는 사람의 목소리보다 높은 최대 20 kHz까지 넓은 주파수 범위로 구성된다. 본 논문에서는 광역 사운드 스펙트로그램과 DNN에 기반한 케라스 시?셜 모델 기법을 활용하여 인지 주파수 범위를 넓게 확대하는 새로운 인식방법을 제안한다. 광역 사운드 스펙트로그램이 본 논문에서 설계된 특징 추출 및 분류 시스템과 같이 넓은 주파수 범위의 다양한 소리를 분석하고 실험하도록 채택되었다. 소리 인식률을 개선하기 위하여, 케라스 시?셜 모델이 사운드 스펙트로그램에 의하여 생성되어 추출된 특징을 사용하여 패턴인식을 수행하기 위한 방법으로 채용되었다. 제안된 특징 추출 및 분류 시스템이 광역 사운드 스펙트로그램과 케라스 시?셜 모델을 채용하여 애완동물 소리와 실내 소리같은 다양한 주파수들로 구성되어 중첩된 음향 속에서 설정된 소리를 우수하게 분류하는 것을 확인하였다. 그리고 중첩된 소리의 크기에 비례하여 인식에 미치는 특성과 영향을 단계별로 비교 분석하였다.