• Title/Summary/Keyword: Kelvin-probe method

Search Result 13, Processing Time 0.027 seconds

Probing of Surface Potential Using Atomic Force Microscopy

  • Kwon, Owoong;Kim, Yunseok
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.100-104
    • /
    • 2014
  • As decreasing device size, probing of nanoscale surface properties becomes more significant. In particular, nanoscale probing of surface potential has paid much attention for understanding various surface phenomena. In this article, we review different atomic force microscopy techniques, including electrostatic force microscopy and Kelvin probe force microscopy, for measuring surface potential at the nanoscale. The review could provide fundamental information on the probing method of surface potential using atomic force microscopy.

A Study on Space Charge of Organic Pentacene/metal Interface (유기물 Pentacene 박막과 금속 계면에서의 Space Charge 연구)

  • Yoon, Young-Woon;Babajayan, Arsen;Lee, Hoo-Neung;Kim, Song-Hui;Lee, Kie-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.41-46
    • /
    • 2007
  • Surface potential properties at the interface of pentacene thin films on gold (Au) and aluminum (Al) surfaces were investigated by using a near-field scanning microwave microprobe (NSMM). The surface potential formed across the pentacene film was observed by measuring the microwave reflection coefficient $S_{11}$ and compared with the result of a Kelvin-probe method. The obtained reflection coefficient ${\Delta}S_{11}$ of the pentacene thin films on Al was decreased as the pentacene film thickness increased due to the increased accumulation of negative space charges, while for Au ${\Delta}S_{11}$ was essentially constant.

Advanced atomic force microscopy-based techniques for nanoscale characterization of switching devices for emerging neuromorphic applications

  • Young-Min Kim;Jihye Lee;Deok-Jin Jeon;Si-Eun Oh;Jong-Souk Yeo
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.7.1-7.9
    • /
    • 2021
  • Neuromorphic systems require integrated structures with high-density memory and selector devices to avoid interference and recognition errors between neighboring memory cells. To improve the performance of a selector device, it is important to understand the characteristics of the switching process. As changes by switching cycle occur at local nanoscale areas, a high-resolution analysis method is needed to investigate this phenomenon. Atomic force microscopy (AFM) is used to analyze the local changes because it offers nanoscale detection with high-resolution capabilities. This review introduces various types of AFM such as conductive AFM (C-AFM), electrostatic force microscopy (EFM), and Kelvin probe force microscopy (KPFM) to study switching behaviors.

Surface Potential Change Depending on Molecular Orientation of Hexadecanethiol Self-Assembled Monolayers on Au(111)

  • Ito, Eisuke;Arai, Takayuki;Hara, Masahiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1309-1312
    • /
    • 2009
  • Surface potential and growth processes of hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) surfaces were examined by Kelvin probe method and scanning tunneling microscopy. It was found that surface potential strongly depends on surface structure of HDT SAMs. The surface potential shift for the striped phase of HDT SAMs chemisorbed on Au(111) surface was +0.45 eV, which was nearly the same as that of the flat-lying hexadecane layer physisorbed on Au(111) surface. This result indicates that the interfacial dipole layer induced by adsorption of alkyl chains is a main contributor to the surface potential change. In the densely-packed HDT monolayer, further change of the surface potential was observed, suggesting that the dipole moment of the alkanethiol molecules is an origin of the surface potential change. These results indicate that the work function of a metal electrode can be modified by controlling the molecular orientation of an adsorbed molecule.

Optimization of CdS buffer layers for $Cu_2ZnSnSe_4$ thin-film applications ($Cu_2ZnSnSe_4$ 태양전지의 적용을 위한 최적화 된 CdS 버퍼층 연구)

  • Kim, Gee-Yeong;Jeong, Ah-Reum;Jo, William
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.400-403
    • /
    • 2012
  • $Cu_2ZnSnSe_4$(CZTSe) is emerged as a promising material for thin-film solar cells because of non-toxic, inexpensive and earth abundant more than $Cu(In,Ga)Se_2$ materials. For fabricating compound semiconductor thin-film solar cells, CdS is widely used for a buffer layer which fabricated by a chemical bath deposition method (CBD). Through the experiment, we controlled deposition temperature and mol ratio of solution conditions to find the proper grain 크기 and exact composition. The optimum CdS layers were characterized in terms of surface morphology by using a scanning electron microscope (SEM) and atomic force microscope (AFM). The optimized CdS layer process was applied on CZTSe thin-films. The thickness of buffer layer related with device performance of solar cells which controlled by deposition time. Local surface potential of CdS/CZTSe thin-films was investigated by Kelvin probe force microscopy (KPFM). From these results, we can deduce local electric properties with different thickness of buffer layer on CZTSe thin-films. Therefore, we investigated the effect of CdS buffer layer thickness on the CZTSe thin-films for decreasing device losses. From this study, we can suggest buffer layer thickness which contributes to efficiencies and device performance of CZTSe thin-film solar cells.

  • PDF

Metal-Semiconductor Contact Behavior of Solution-Processed ZnSnO Thin Film Transistors (용액법으로 제작된 ZnSnO 박막트랜지스터의 전극 물질에 따른 계면 접촉특성 연구)

  • Jeong, Young-Min;Song, Keun-Kyu;Woo, Kyoo-Hee;Jun, Tae-Hwan;Jung, Yang-Ho;Moon, Joo-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.401-407
    • /
    • 2010
  • We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.

Mercury ion detection technique using KPFM (KPFM을 통한 수은이온 검출 방법)

  • Park, Chanho;Jang, Kwewhan;Lee, Sangmyung;You, Juneseok;Na, Sungsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.358-360
    • /
    • 2014
  • For the several decades, various nanomaterials are broadly used in industry and research. With the growth of nanotechnology, the study of nanotoxicity is being accelerated. Particularly, mercury ion is widely used in real life. Because the mercury is representative high toxic material, it is highly recommended to detect the mercury ion. In previous reported work, thymine-thymine mismatches (T-T) capture mercury ion and create very stable base pair ($T-Hg^{2+}-T$). Here, we performed the high sensitive sensing method for direct label free detection of mercury ions and DNA binding using Kelvin Probe Force Microscope (KPFM). In this method, 30 base pairs of thymine (T-30) is used for mercury specific DNA binding ($T-Hg^{2+}-T$). KPFM is able to detect the mercury ion because there is difference between bare T-30 DNA and mercury mediated DNA ($T-Hg^{2+}-T$).

  • PDF

Surface Potential Properties of CuPc/Au Interface with Varying Temperature (CuPc/Au 계면에서의 온도 변화에 따른 표면전위 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.934-937
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. So we need the effect of the substituent group attached to the phthalocyanine on the surface potential was investigated by Kelvin probe method with varying temperature of the substrate. We were obtained the positive shift of the surface potential for CuPc thin film. We observed the electron displacement at the interface between Au electrode and CuPc layer and we were confirmed by the surface potential measurement.

Surface Potential Properties of CuPc/Au Interface with Varying Temperature (CuPc/Au 구조에서의 온도 변화에 따른 계면에서의 표면전위 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Kim, Young-Pyo;Yu, Seong-Mi;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.492-493
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine(CuPc) based field-effect transistor with different metal electrode. So we need the effect of the substituent group attached to the phthalocyanine on the surface potential was investigated by Kelvin probe method with varying temperature of the substrate. We were obtained the positive shift of the surface potential for CuPc thin film. We observed the electron displacement at the interface between Au electrode and CuPc layer and we were confirmed by the surface potential measurement.

  • PDF

A Study for plasma nonuniformity measurement by PDM Tool (PDM Tool을 이용한 plasma nonuniformity 측정에 관한 연구)

  • 김상용;서용진;이우선;정헌상;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.75-78
    • /
    • 2000
  • This paper is estimated to enhance yield improvement and device reliability using PDM(plasma damage monitoring) system capable of in-suit detection about plasma nonuniformity. PDM Tool is the non-contact method of wafer and surface potential electrode(kelvin probe). Its tool measures Vox(oxide barrier) with charge created by plasma. It's possible to inspect the wafer damage generated by plasma charge and analysis of in-situ monitoring data. we obtained the good data which is continuously prevented from plasma damage using its tool for 10weeks. This tool is contributed to preventive steps contemporaneously inspecting the difference of inter-chamber.

  • PDF