• Title/Summary/Keyword: Kelvin material model

Search Result 44, Processing Time 0.026 seconds

Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping

  • Shokravi, Maryam;Jalili, Nader
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.583-593
    • /
    • 2017
  • This research deals with the nonlocal temperature-dependent dynamic buckling analysis of embedded sandwich micro plates reinforced by functionally graded carbon nanotubes (FG-CNTs). The material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT) in which the size effects are considered using Eringen's nonlocal theory. The differential quadrature (DQ) method in conjunction with the Bolotin's methods is applied for calculating resonance frequency and dynamic instability region (DIR) of structure. The effects of different parameters such as volume percent of CNTs, distribution type of CNTs, temperature, nonlocal parameter and structural damping on the dynamic instability of visco-system are shown. The results are compared with other published works in the literature. Results indicate that the CNTs have an important role in dynamic stability of structure and FGX distribution type is the better choice.

Longitudinal vibration of a nanorod embedded in viscoelastic medium considering nonlocal strain gradient theory

  • Balci, Mehmet N.
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This article investigates the longitudinal vibration of a nanorod embedded in viscoelastic medium according to the nonlocal strain gradient theory. Viscoelastic medium is considered based on Kelvin-Voigt model. Governing partial differential equation is derived based on longitudinal equilibrium and analytical solution is obtained by adopting harmonic motion solution for the nanorod. Modal frequencies and corresponding damping ratios are presented to demonstrate the influences of nonlocal parameter, material length scale, elastic and damping parameters of the viscoelastic medium. It is observed that material length scale parameter is very influential on modal frequencies especially at lower values of nonlocal parameter whereas increase in length scale parameter has less effect at higher values of nonlocal parameter when the medium is purely elastic. Elastic stiffness and damping coefficient of the medium have considerable impacts on modal frequencies and damping ratios, and the highest impact of these parameters on frequency and damping ratio is seen in the first mode. Results calculated based on strain gradient theory are quite different from those calculated based on classical elasticity theory. Hence, nonlocal strain gradient theory including length scale parameter can be used to get more accurate estimations of frequency response of nanorods embedded in viscoelastic medium.

A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model

  • Deswal, Sunita;Kalkal, Kapil Kumar;Sheoran, Sandeep Singh
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.89-102
    • /
    • 2017
  • In this work, we present a theoretical framework to study the thermovisco-elastic responses of homogeneous, isotropic and perfectly conducting medium subjected to inclined load. Based on recently developed generalized thermoelasticity theory with fractional order strain, the two-dimensional governing equations are obtained in the context of generalized magnetothermo-viscoelasticity theory without energy dissipation. The Kelvin-Voigt model of linear viscoelasticity is employed to describe the viscoelastic nature of the material. The resulting formulation of the field equations is solved analytically in the Laplace and Fourier transform domain. On the application of inclined load at the surface of half-space, the analytical expressions for the normal displacement, strain, temperature, normal stress and tangential stress are derived in the joint-transformed domain. To restore the fields in physical domain, an appropriate numerical algorithm is used for the inversion of the Laplace and Fourier transforms. Finally, we have demonstrated the effect of magnetic field, viscosity, mechanical relaxation time, fractional order parameter and time on the physical fields in graphical form for copper material. Some special cases have also been deduced from the present investigation.

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams (비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화)

  • Lee, Doo-Ho;Hwang, Woo-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.938-946
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximizeloss factor using a numerical search method. The fractional derivative model can describe damping characteristics of viscoelastic damping materials accurately, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kelvin[RUK] equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are identified with ambient temperatures and thickness ratios of beam and damping layer by using a finite-difference-based steepest descent method.

Three dimensional dynamic response of functionally graded nanoplates under a moving load

  • Hosseini-Hashemi, Shahrokh;Khaniki, Hossein Bakhshi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.249-262
    • /
    • 2018
  • In this paper, reaction of functionally graded (FG) thick nanoplates resting on a viscoelastic foundation to a moving nanoparticle/load is investigated. Nanoplate is assumed to be thick by using second order shear deformation theory and small-scale effects are taken into account in the framework of Eringen's nonlocal theory. Material properties are varied through the thickness using FG models by having power-law, sigmoid and exponential functions for material changes. FG nanoplate is assumed to be on a viscoelastic medium which is modeled using Kelvin-Voight viscoelastic model. Galerkin, state space and fourth-order Runge-Kutta methods are employed to solve the governing equations. A comprehensive parametric study is presetned to show the influence of different parameters on mechanical behavior of the system. It is shown that material variation in conjunction with nonlocal term have a significant effect on the dynamic deformation of nanoplate which could be used in comprehending and designing more efficient nanostructures. Moreover, it is shown that having a viscoelastic medium could play an important role in decreasing these dynamic deformations. With respect to the fresh studies on moving atoms, molecules, cells, nanocars, nanotrims and point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors by showing the influence of the moving path, velocity etc. on dynamic reaction of the plate.

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Dynamic characteristics of viscoelastic nanobeams including cutouts

  • Rabab A. Shanab;Norhan A. Mohamed;Mohamed A. Eltaher;Alaa A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.45-65
    • /
    • 2023
  • This paper aimed to investigate the nonclassical size dependent free vibration behavior of regularly squared cutout viscoelastic nanobeams. The nonlocal strain gradient elasticity theory is modified and adopted to incorporate the viscoelasticity effect. The Kelvin Voigt viscoelastic model is adopted to model the linear viscoelastic constitutive response. To explore the influence of shear deformation effect due to cutout, both Euler Bernoulli and Timoshenko beams theories are considered. The Hamilton principle is utilized to derive the dynamic equations of motion incorporating viscoelasticity and size dependent effects. Closed form solutions for the resonant frequencies for both perforated Euler Bernoulli nanobeams (PEBNB) and perforated Timoshenko nanobeams (PTNB) are derived considering different boundary conditions. The developed procedure is verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the material damping, the perforation, the material and the geometrical parameters as well as the boundary and loading conditions on the dynamic behavior of viscoelastic perforated nanobeams. The proposed procedure and the obtained results are supportive in the analysis and design of perforated viscoelastic NEMS structures.

Nonlinear vibration of SSMFG cylindrical shells with internal resonances resting on the nonlinear viscoelastic foundation

  • Kamran, Foroutan;Habib, Ahmadi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.767-782
    • /
    • 2022
  • In this paper, the nonlinear vibration behavior of the spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells exposed to the thermal environment and a uniformly distributed harmonic loading using a semi-analytical method is investigated. The cylindrical shell is surrounded by a nonlinear viscoelastic foundation consisting of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The distribution of temperature and material constitutive of the stiffeners are continuously changed through the thickness direction. The cylindrical shell has three layers consisting of metal, FGM, and ceramic. The interior layer of the cylindrical shell is rich in metal, while the exterior layer is rich in ceramic, and the FG material is located between two layers. The nonlinear vibration problem utilizing the smeared stiffeners technique, the von Kármán equations, and the Galerkin method has been solved. The multiple scales method is utilized to examine the nonlinear vibration behavior of SSMFG cylindrical shells. The considered resonant case is 1:3:9 internal resonance and subharmonic resonance of order 1/3. The influences of different material and geometrical parameters on the vibration behavior of SSMFG cylindrical shells are examined. The results show that the angles of stiffeners, temperature, and elastic foundation parameters have a strong effect on the vibration behaviors of the SSMFG cylindrical shells.

Combination resonances of imperfect SSFG cylindrical shells rested on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.87-100
    • /
    • 2020
  • The present paper investigates the combination resonance behavior of imperfect spiral stiffened functionally graded (SSFG) cylindrical shells with internal and external functionally graded stiffeners under two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation, which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness, to account for the vibration hardening/softening phenomena and damping considerations. With regard to classical plate theory of shells, von-Kármán equation and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The combination resonance is obtained by using the multiple scales method. Finally, the influences of the stiffeners angles, foundation type, the nonlinear elastic foundation coefficients, material distribution, and excitation amplitude on the system resonances are investigated comprehensively.

Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets

  • Zhang, Yonggang;Wang, Yonghong;Zhao, Yuanyuan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.369-383
    • /
    • 2021
  • This article deals with the frequency analysis of viscoelastic sandwich disk with graphene nano-platelets (GPLs) reinforced viscoelastic concrete (GPLRVC) face sheets and honeycomb core. The honeycomb core is made of aluminum due to its low weight and high stiffness. The rule of the mixture and modified Halpin-Tsai model are engaged to provide the effective material constant of the concrete. By employing Hamilton's principle, the governing equations of the structure are derived and solved with the aid of the Generalize Differential Quadrature Method (GDQM). In this paper, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Afterward, a parametric study is carried out to investigate the effects of the outer to inner radius ratio, hexagonal core angle, thickness to length ratio of the concrete, the weight fraction of GPLs into concrete, and the thickness of honeycomb core to inner radius ratio on the frequency of the viscoelastic sandwich disk with honeycomb core and FG-GPLRVC face sheet.