• Title/Summary/Keyword: KbESF

Search Result 4, Processing Time 0.019 seconds

Electroporation 방법을 이용한 포유동물 세포내 GFP 유전자 도입

  • 양병철;성환후;김동훈;이상기;오현주;임석기;박수봉;이은주;민관식
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.70-70
    • /
    • 2002
  • 형질전환 가축을 생산하기 위하여 최근 체세포 복제 기법을 이용하고 있다. 이러한 체세포를 이용한 형질전환 동물의 생산에는 체세포내에 유전자의 도입 효율이 직접적인 영향을 주게 된다. 따라서 본 연구는 세포내 유전자의 transfection 효율을 높이고자 한우의 체세포를 이용하여 여러 가지 조건에서 유전자 도입을 실시하였다. 세포내 유전자 도입 방법은 electroporation (EP) 방법을 이용하였다. 사용한 세포는 소의 귀세포(KbESF), 태아섬유아세포 (KbFF), 그리고 대조구로서 CHO cell을 이용하여 GFP 유전자를 도입하였다. EP는 0.4 cm cuvette을 사용하였고, voltage는 0.25 kV, 그리고 field strength 는 0.625 kV/cm 조건으로 실시하였으며, pulse times은 각각 1, 2, 또는 3회를 사용하였다. KbFF와 KbESF에서는 각각 pulse times을 증가시킬수록 유전자도입 세포수가 증가하였으나 (KbFF: 81, 634, 1,065 cells/$10^{6}$ cells, KbESF: 1,011, 5,567, 15,408 cells/$10^{6}$ cells), CHO cell에서는 pulse times을 증가시킬 수록 오히려 유전자도입 세포수가 감소하였다 (CHO: 1,591, 687, 297 cells/$10^{6}$ cells). 그리고 2주 동안 neo selection을 실시 한 결과 KbFF, KbESF, CHO에서 각각 93, 35, 184 colony가 선발되었으며, 이 중 65.6%, 8.6%, 4.3% 가 GFP 형광 발현 colony로 나타났다. 한편 CHO cell에서 transfection cell수가 감소된 것은 EP의 자극으로 인해 손상된 세포가 많이 발생한 것으로 나타났다. 또한 neo selection에서 선발된 colony중 GFP가 발현되지 않거나 일부만 발현되는 colony들이 많이 발생하였는데, 이것은 세포내 유전자가 transfection되지 않은 세포도 neo selection에서 선발된다는 것을 제시하고 있다. 따라서 체세포를 이용한 형질전환동물 생산을 위해서는 세포내 유전자 도입과 선발 과정에서 나타난 colony에 대하여 보다 엄격한 screen을 하는 것이 필요한 것으로 생각된다.

  • PDF

Effect of Fusion Method and Passage Culture of Hanwoo (Korean Cattle) Ear Skin and Fetal Fibroblasts on the Development of Nuclear Transfer Embryos (한우의 귀세포와 태아섬유아세포의 융합 방법과 Passage 배양이 복제수정란의 발달에 미치는 영향)

  • Yang Byoung-Chul;Im Gi-Sun;Lee Sang-Ki;Kim Se-Woong;Kim Dong-Hoon;Seong Hwan-Hoo;Yang Boh-Suk
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • The study was conducted to evaluate the effects of culture period and fusion method on the development of somatic cell nuclear transfer (SCNT) embryos reconstituted with Korean bovine fetal fibroblast cells (KbFF) and Korean bovine adult ear skin fibroblast cells (KbESF). KbFF were isolated from a day 51 Korean cattle (Hanwoo) fetus, and KbESF were isolated from a 28 month old Hanwoo calf. The cells were cultured up to 15 weeks (passage 15) in vitro for SCNT. Chamber and electrode needles were used for comparing fusion of reconstituted eggs. The doubling times of KbFF and KbESF were 17.3 hr and 24.3 hr, respectively. The fusion and cleavage rates were significantly higher in needle group (76.1 and 81.2% respectively, P<0.05) than those in chamber group. However, the blastocyst development rate was not different between both groups. Fusion and cleavage rates of NT eggs reconstituted with KbESF did not affected by passage number, however, blastocyst rates were lower in passage $1{\sim}4$ group (21.3%) than passage $5{\sim}8$ (39.4%) and $13{\sim}15$ groups (40.4%, P<0.05). Whereas, fusion rate was lower in passage $1{\sim}4$ group (61.5%) than those of passage $5{\sim}8$(75.0%) and $13{\sim}15$ (76.8%) groups, but cleavage and blastocyst rates were similar regardless of passage number in the KbFF. The results suggest that fusion method can affect the development of SCNT embryos, whereas the long term culture up to 15 passages may not affect the development of SCNT embryos.

Production of Thrombopoietin Gene Targeted Clones by Homologous Recombination at $\beta$-casein Locus of Primary Bovine Ear Skin Fibroblasts

  • Mira Chang;Oh, Keon-Bong;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.86-86
    • /
    • 2003
  • Research has been in progress for more than a decade to production of useful proteins by genetic modification in cattle. However, the levels of protein production in transgenic cattle have been reported very low. To enhance protein production in transgenic animal, we tried homologous recombination to donor cells for production of transgenic clone cattle through nuclear transfer procedure. Thus, we constructed the two targeting vectors of human thrombopoietin (TPO) at bovine $\beta$-casein locus using homologous recombination with 13.6 kb and 9.6 kb homology. In two targeting vectors, positive selection was through the neomycin resistance gene and negative selection was by the diphtheria toxin (DT). Gene targeting was attempted in bovine embryonic fibroblasts (bEF) and bovine ear skin fibroblasts (bESF). To determine the most appropriate concentration of neomycin for bEF and bESF, G4l8 resistance was confirmed by culturing the cells in various concentrations of the drug and both of the cells were optimally selected at $900 \mu g/ml$ of neomycin. The transfected bEF and bESF by the targeting vectors were colonized efficiently at the ratio of DNA to transfection reagent such as $4 \mu g$:2 ${mu}ell$ and $1 \mu g$:$2 \mu l$. Comparing number of healthy clones from passage 4 to passage 8, bESF (17%) persist in culture for much longer than bEF (6%). The two gene-targeted bESF clones of 30 random-integrated clones with 9.6 kb homology length were confirmed, however, nothing was out of 72 random integration clones with 13.6 kb homology length, The DT also worked more efficiently in clones transfected with the vector of 9.6 kb homology length. Our data suggests that the choice of donor cell for long culture period should be considered to obtain targeted cell clone, and the gene-targeting frequency and the DT working efficiency are dependent on the length of target homology.

  • PDF

Bovine Nuclear Transfer using Ear Skin Fibroblast Cells Derived from Serum Starvation and Passage Numbers

  • Yang, Byoung-Chul;Im, Gi-Sun;Park, Jin-Ki;Kim, Hyun-Ju;Chang, Won-Kyung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.64-64
    • /
    • 2001
  • To facilitate the widespread application of somatic cell cloning, improvements in blastocyst production efficiency and subsequent fetal viability are required. Area where technical improvements are needed include donor cell treatments, starvation and passage numbers. This study was carried out to investigate the effect of serum-starvation and passage on the development of ear skin fibroblast cells cloned embryos. A skin biopsy was obtained from the ear of a 2-year-old Korean Hanwoo female. The cells were cultured in 10% FBS+DMEM up to 2-3 months(up to 10 passages) and then used. In Experiment 1, the Korean bovine Ear Skin Fibroblast cells (KbESF) were either serum starved (culture in 0.05% FBS+DMEM) or serum fed (10% FBS+DMEM) for 4-7 days Prior to NT In Experiment 2, the KbESF cells used for nuclear transfer in these experiments were from passages 2 to 10. The development of 208 nuclear transfer (NT) embryos reconstructed from either serum starved or serum fed ear skin fibroblast was assessed. NT embryos reconstructed from serum starved and serum fed cells showed the same developmental rate (cleavage 80.16 vs. 85.37%; blastocyst 20.63 vs. 19,51%). The development of 590 nuclear transfer (NT) embryos reconstructed from passage 2 to 10 was assessed. We observed the same developmental rates for embryos derived from later Passages as compared with those embryos from early passages(blastocyst from 16.69 to 27.91%, average 20.17%). There was no significant difference between serum-fed and serum-starved donor cells. We observed no difference in developmental rates for embryos derived from 2 to 10 passages. These data show that prolonged culture and serum starvation does not affects the cloning competence of adult somatic cells.

  • PDF