• Title/Summary/Keyword: KatA

Search Result 60, Processing Time 0.023 seconds

Two Kinesins from Arabidopsis, KatB and KatC, Have a Second Microtubule-binding Site in the Tail Domain

  • Jiang, Shiling;Li, Ming;Xu, Tao;Ren, Dongtao;Liu, Guoqin
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.44-52
    • /
    • 2007
  • Kinesins, as a kind of microtubule-based motor proteins, have a conserved microtubule-binding site in their motor domain. Here we report that two homologous kinesins in Arabidopsis thaliana, KatB and KatC, contain a second microtubule-binding site in their tail domains. The prokaryotic-expressed N-terminal tail domain of the KatC heavy chain can bind to microtubules in an ATP-insensitive manner. To identify the precise region responsible for the binding, a serious of truncated KatC cDNAs encoding KatC N-terminal regions in different lengths, KatC1-128, KatC1-86, KatC1-73 and KatC1-63, fused to Histidine-tags, were expressed in E. coli and affinity-purified. Microtubule cosedimentation assays show that the site at amino acid residues 74-86 in KatC is important for microtubule-binding. By similarity, we obtained three different lengths of KatB N-terminal regions, KatB1-384, KatB1-77, and KatB1-63, and analyzed their microtubule-binding ability. Cosedimentation assays indicate that the KatB tail domain can also bind to microtubules at the same site as and in a similar manner to KatC. Fluorescence microscopic observations show that the microtubule-binding site at the tail domain of KatB or KatC can induce microtubules bundling only when the stalk domain is present. Through pull-down assays, we show that KatB1-385 and KatC1-394 are able to interact specifically with themselves and with each other in vitro. These findings are significant for identifying a previously uncharacterized microtubule-binding site in the two kinesin proteins, KatB and KatC, and the functional relations between them.

A dominant negative OsKAT2 mutant delays light-induced stomatal opening and improves drought tolerance without yield penalty in rice

  • Kim, Jin-Ae;Moon, Seok-Jun;Lee, Yongsang;Min, Myung Ki;Yoon, In sun;Kwon, Taek-Ryoun;Kim, Beom-Gi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.110-110
    • /
    • 2017
  • Stomata are the main gateways for water and air transport between leaves and the environment. Inward-rectifying potassium channels regulate photo-induced stomatal opening. Rice contains three inward rectifying shaker-like potassium channel proteins, OsKAT1, OsKAT2 and OsKAT3. Among these, only OsKAT2 is specifically expressed in guard cells. Here, we investigated the functions of OsKAT2 in stomatal regulation using three dominant negative mutant proteins, OsKAT2(T235R), OsKAT2(T285A) and OsKAT2(T285D), which are altered in amino acids in the channel pore and at a phosphorylation site. Yeast complementation and patch clamp assays showed that all three mutant proteins lost channel activity. However, among plants overexpressing these mutant proteins, only plants overexpressing OsKAT2(T235R) showed significantly less water loss than the control. Moreover, overexpression of this mutant protein led to delayed photo-induced stomatal opening and increased drought tolerance. Our results indicate that OsKAT2 is an inward-rectifying shaker-like potassium channel that mainly functions in stomatal opening. Interestingly, overexpression of OsKAT2(T235R) did not cause serious defects in growth or yield in rice, suggesting that OsKAT2 is a potential target for engineering plants with improved drought tolerance without yield penalty.

  • PDF

IscR Modulates Catalase A (KatA) Activity, Peroxide Resistance, and Full Virulence of Pseudomonas aeruginosa PA14

  • Kim, Seol-Hee;Lee, Bo-Young;Lau, Gee W.;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1520-1526
    • /
    • 2009
  • We have identified the iscR (PA3815) gene encoding an iron-sulfur cluster assembly regulator homolog as one of the genes required for peroxide resistance in Pseudomonas aeruginosa PA14. Here, we present the phenotypic characterization of an iscR deletion mutant in terms of KatA expression, stress responses, and virulence. The iscR null mutant exhibited reduced KatA activity at the posttranslational level, hypersensitivity to hydrogen peroxide, and virulence-attenuation in Drosophila melanogaster and mouse peritonitis models. These phenotypes were fully restored by multicopy-based expression of katA. These results suggest that the requirement of IscR in P. aeruginosa is related to the proper activity of KatA, which is crucial for peroxide resistance and full virulence of this bacterium.

Mutations of katG and inhA in MDR M. tuberculosis (국내에서 분리된 다제 내성 결핵균의 katG 와 inhA 변이 다양성 및 그 빈도)

  • Lin, Hai Hua;Kim, Hee-Youn;Yun, Yeo-Jun;Park, Chan Geun;Kim, Bum-Joon;Park, Young-Gil;Kook, Yoon-Hoh
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.2
    • /
    • pp.128-138
    • /
    • 2007
  • Backgrounds: Mutations of katG and inhA (ORF and promoter) are known to be related to isoniazid (INH) resistance of Mycobacterium tuberculosis. Because reports on these mutations in Korean isolates are limited (i.e. only the frequency of katG codon 463 was evaluated.), we tried to know the kinds of mutations of two genes and their frequencies in INH resistant Korean M. tuberculosis strains. Methods: PCR was performed to amplify katG (2,223 bp), inhA ORF (-77~897, 975 bp), and inhA promoter (-168~80, 248 bp) from 29 multidrug resistant M. tuberculosis (MDR-TB) DNAs prepared by bead beater-phenol method. Their sequences were determined and analyzed by ABI PRISM 3730 XL Analyzer and MegAlign package program, respectively. Results: All of the isolates had more than one mutation in katG or inhA gene. Twenty seven (93%) of 29 tested strains had katG mutations, which suggests that katG is a critical gene determining INH resistance of M. tuberculosis. Amino acid substitutions, such as Arg463Leu and Ser315Thr, due to point mutations of the katG were the most frequent (62.1% and 55.2%) mutations. In addition, deletion of the katG gene was frequently observed (17.2%). Analyzed Korean MDR-TB isolates also had variable inhA mutations. Point mutation of inhA promoter region, such as -15 ($C{\rightarrow}T$) was frequently found. Substitution of amino acid (Lsy8Asn) due to point mutation ($AAA{\rightarrow}AAC$) of inhA ORF was found in 1 isolate. Interestingly, 14 point mutated types that were not previously reported were newly found. While four types resulted in amino acid change, the others were silent mutations. Conclusions: Although it is not clear that the relationship of these newly found mutations with INH resistance, they show marked diversity in Korean MDR-TB strains. It also suggests their feasibility as a molecular target to supplement determining the INH resistance of clinical isolates because of the possible existence of low-level INH resistant strains.

Fat Embolism Syndrome - Three Case Reports and Review of the Literature

  • Grigorakos, Leonidas;Nikolopoulos, Ioannis;Stratouli, Stamatina;Alexopoulou, Anastasia;Nikolaidis, Eleftherios;Fotiou, Eleftherios;Lazarescu, Daria;Alamanos, Ioannis
    • Journal of Trauma and Injury
    • /
    • v.30 no.3
    • /
    • pp.107-111
    • /
    • 2017
  • The fat embolism syndrome (FES) represents a condition, usually with traumatic etiology, which may pose challenges to diagnosis while its treatment usually requires supportive measures in the intensive care units (ICUs). The clinical criteria, including respiratory and cerebral dysfunction and a petechial rash, along with imaging studies help in diagnosis. Here we present three case reports of young male who developed FES and were admitted to our ICUs after long bones fractures emerging after vehicle crashes and we briefly review FES literature. All patients' treatment was directed towards: 1) the restoration of circulating volume with fresh blood and/or plasma; 2) the correction of acidosis; and 3) immobilization of the affected part. All patients recovered and were released to the orthopedic wards. The incidence of cases of patients with FES admitted in our ICUs records a significant decrease. This may be explained in terms effective infrastructure reforms in Greece which brought about significant improvement in early prevention and management.

Mutagenicity and Hepato-Toxicity of Kyoaesamultang (교애사물탕의 변이원성 및 간독성에 관한 연구)

  • 우덕안;홍희탁;문진영;이태균;김철호;김준기;최미정;남경수
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.197-202
    • /
    • 1997
  • Kyoaesamultang(KAT) has been used as an important prescription for various diseases including threatened abortion, associated with pregnancy in traditional medicine. In oder to identify the safety of KAT, this study was designed to determine mutagenicity and hepato-toxicity. In Rec-assay, Bacillus subtills H-17($Rec{^+}$) and M-45($Rec{^-}$) strains were used to clarify the DNA damage property. In Ames test, Salmonella typhimurium TA98 and TA100 were used for mutagenicity testing. In SOS umu test, Salmonella typhimurium TA1535 containing plasmid pSK1002 was used as a tester strain, and the levels of umu operon expression were monitored by measuring the $\beta$-galactosidase activity. From tested results, KAT did not show DNA damage and mutagenicity. On the other hand, hepato-toxicity of KAT to female ICR mice was monitored by the measurements of s-GOT, s-GPT and LDH activities after oral feeding for 15days. KAT showed 34% increase of s-GOT and s-GPT activities, also exhibited 35% increase of LDH activity in mice sera.

  • PDF

A neonate with Say-Barber-Biesecker-Young-Simpson syndrome with a novel pathogenic mutation in KAT6B gene: A case report

  • Shin, Ji Hye;Lim, Han Hyuk;Gang, Mi Hyeon;Kim, Seon Young;Yang, Shin-seung;Chang, Mea-young
    • Journal of Genetic Medicine
    • /
    • v.18 no.2
    • /
    • pp.147-151
    • /
    • 2021
  • The Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome (SBBYSS) (Online Mendelian Inheritance in Man #603736) is a rare autosomal dominant disorder and clinically features blepharophimosis with ptosis, a mask-like facial appearance, cryptorchidism, congenital heart defect, long thumbs/great toes, and thyroid dysfunction. The etiology of SBBYSS has been shown to be due to heterozygous KAT6B gene mutation. Here we report a case of a neonate with SBBYSS identified a novel mutation in KAT6B gene. The patient showed typical dysmorphic facies, cryptorchidism with micropenis, overriding fingers, and long thumbs and toes at birth. He had also hypothyroidism, large atrial septal defect, and sensorineural hearing loss. The next generation sequencing identified a heterozygous novel variant, c.5206C>T (p.Gln1736Ter) in KAT6B gene. At the 9 months of age, he underwent patch closure for atrial septal defect. Until the 12-month follow-up, he was under-developed.

Identification of Pseudomonas aeruginosa Genes Crucial for Hydrogen Peroxide Resistance

  • Choi, Young-Seok;Shin, Dong-Ho;Chung, In-Young;Kim, Seol-Hee;Heo, Yun-Jeong;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1344-1352
    • /
    • 2007
  • An opportunistic human pathogen, Pseudomonas aeruginosa, contains the major catalase KatA, which is required to cope with oxidative and osmotic stresses. As an attempt to uncover the $H_2O_2$-dependent regulatory mechanism delineating katA gene expression, four prototrophic $H_2O_2$-sensitive mutants were isolated from about 1,500 TnphoA mutant clones of P. aeruginosa strain PA14. Arbitrary PCR and direct cloning of the transposon insertion sites revealed that one insertion is located within the katA coding region and two are within the coding region of oxyR, which is responsible for transcriptional activation of several antioxidant enzyme genes in response to oxidative challenges. The fourth insertion was within PA3815 (IscR), which encodes a homolog of the Escherichia coli iron-sulfur assembly regulator, IscR. The levels of catalase and SOD activities were significantly reduced in the iscR mutant, but not in the oxyR mutant, during the normal planktonic culture conditions. These results suggest that both IscR and OxyR are required for the optimal resistance to $H_2O_2$, which involves the expression of multiple antioxidant enzymes including KatA.

Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5

  • Moriwaki, Teppei;Yamamoto, Yujirou;Aida, Takehiko;Funahashi, Tatsuya;Shishido, Toshiyuki;Asada, Masataka;Prodhan, Shamusul Haque;Komamine, Atsushi;Motohashi, Tsuyoshi
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in $T_1$ and $T_2$ transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. $T_2$ transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.

Correlation between GenoType MTBDRplus Assay and Phenotypic Susceptibility Test for Prothionamide in Patients with Genotypic Isoniazid Resistance

  • Lee, Joo Hee;Jo, Kyung-Wook;Shim, Tae Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.143-150
    • /
    • 2019
  • Background: The purpose of this study was to analyze the relationship between the gene mutation patterns by the GenoType MTBDRplus (MTBDRplus) assay and the phenotypic drug susceptibility test (pDST) results of isoniazid (INH) and prothionamide (Pto). Methods: A total of 206 patients whose MTBDRplus assay results revealed katG or inhA mutations were enrolled in the study. The pDST results were compared to mutation patterns on the MTBDRplus assay. Results: The katG and inhA mutations were identified in 68.0% and 35.0% of patients, respectively. Among the 134 isolated katG mutations, three (2.2%), 127 (94.8%) and 11 (8.2%) were phenotypically resistant to low-level INH, high-level INH, and Pto, respectively. Among the 66 isolated inhA mutations, 34 (51.5%), 18 (27.3%) and 21 (31.8%) were phenotypically resistant to low-level INH, high-level INH, and Pto, respectively. Of the 34 phenotypic Pto resistant isolates, 21 (61.8%), 11 (32.4%), and two (5.9%) had inhA, katG, and both gene mutations. Conclusion: It is noted that Pto may still be selected as one of the appropriate multidrug-resistant tuberculosis regimen, although inhA mutation is detected by the MTBDRplus assay until pDST confirms a Pto resistance. The reporting of detailed mutation patterns of the MTBDRplus assay may be important for clinical practice, rather than simply presenting resistance or susceptibility test results.