• Title/Summary/Keyword: Karush-Kuhn-Tucker Condition

Search Result 12, Processing Time 0.019 seconds

Electrical Impedance Tomography for Material Profile Reconstruction of Concrete Structures (콘크리트 구조의 재료 물성 재구성을 위한 전기 임피던스 단층촬영 기법)

  • Jung, Bong-Gu;Kim, Boyoung;Kang, Jun Won;Hwang, Jin-Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.249-256
    • /
    • 2019
  • This paper presents an optimization framework of electrical impedance tomography for characterizing electrical conductivity profiles of concrete structures in two dimensions. The framework utilizes a partial-differential-equation(PDE)-constrained optimization approach that can obtain the spatial distribution of electrical conductivity using measured electrical potentials from several electrodes located on the boundary of the concrete domain. The forward problem is formulated based on a complete electrode model(CEM) for the electrical potential of a medium due to current input. The CEM consists of a Laplace equation for electrical potential and boundary conditions to represent the current inputs to the electrodes on the surface. To validate the forward solution, electrical potential calculated by the finite element method is compared with that obtained using TCAD software. The PDE-constrained optimization approach seeks the optimal values of electrical conductivity on the domain of investigation while minimizing the Lagrangian function. The Lagrangian consists of least-squares objective functional and regularization terms augmented by the weak imposition of the governing equation and boundary conditions via Lagrange multipliers. Enforcing the stationarity of the Lagrangian leads to the Karush-Kuhn-Tucker condition to obtain an optimal solution for electrical conductivity within the target medium. Numerical inversion results are reported showing the reconstruction of the electrical conductivity profile of a concrete specimen in two dimensions.

A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation (라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.65-84
    • /
    • 2023
  • The method of Lagrange multipliers, one of the most fundamental algorithms for solving equality constrained optimization problems, has been widely used in basic mathematics for artificial intelligence (AI), linear algebra, optimization theory, and control theory. This method is an important tool that connects calculus and linear algebra. It is actively used in artificial intelligence algorithms including principal component analysis (PCA). Therefore, it is desired that instructors motivate students who first encounter this method in college calculus. In this paper, we provide an integrated perspective for instructors to teach the method of Lagrange multipliers effectively. First, we provide visualization materials and Python-based code, helping to understand the principle of this method. Second, we give a full explanation on the relation between Lagrange multiplier and eigenvalues of a matrix. Third, we give the proof of the first-order optimality condition, which is a fundamental of the method of Lagrange multipliers, and briefly introduce the generalized version of it in optimization. Finally, we give an example of PCA analysis on a real data. These materials can be utilized in class for teaching of the method of Lagrange multipliers.