• 제목/요약/키워드: Kamlet-Jacobs equation

검색결과 3건 처리시간 0.016초

HMX/LLM-116 공결정의 고에너지 특성에 관한 이론 연구 (Theoretical Study on the High Energetic Properties of HMX/LLM-116 Cocrystals)

  • 김성현;고유미;신창호;김승준
    • 대한화학회지
    • /
    • 제60권1호
    • /
    • pp.9-15
    • /
    • 2016
  • 폭발성능이 높은 HMX와 폭발성능은 떨어지지만 안정성이 높은 LLM-116의 분자복합체인 HMX/LLM-116 공결정(cocrystal)의 폭발 속도, 폭발 압력 그리고 열역학적 안정성에 대하여 이론적으로 연구하였다. 각 분자 구조는 B3LYP/cc-pVTZ 수준까지 최적화 하였으며 가장 약한 방아쇠 결합(trigger bond)과 클러스터에 대한 결합에너지를 계산 하여 열역학적 안정성을 확인하였다. 보다 정확한 에너지를 계산하기 위해 MP2 이론 수준에서 한 점(single point) 에너지를 계산하였으며, monte carlo integration 계산을 통해 밀도를 계산 하였다. 엔탈피는 CBS-Q 이론 수준에서 계산하였으며, 폭발 속도와 폭발 압력은 Kamlet-Jacobs 방정식을 이용하여 계산하였다.

화학 양론적 규칙으로 고에너지 물질의 폭발 생성물 조성 결정에 따른 폭발속도 비교분석 (Comparative analysis of detonation velocity in determining product composition for high energetic molecules using stoichiometric rules)

  • 김현정;이병훈;조수경;이성광
    • 분석과학
    • /
    • 제30권6호
    • /
    • pp.405-410
    • /
    • 2017
  • 고 에너지 물질은 폭약이나 로켓의 추진체와 같은 군사적 목적뿐만 아니라 연료, 토목 및 건축 등의 민간 분야에도 사용되고 있다. 새로운 고에너지 물질의 개발을 위해 필수적인 단계는 물질의 폭발성능을 정확하게 계산하는 것이다. 여러 수식들 중에서 폭발 성능을 계산하는데 가장 대표적인 수식은 Kamlet-Jacobs (K-J) 식 이다. K-J 식에서는 폭발 시 기체 생성물의 몰수와 이들 기체의 평균 분자량, 그리고 폭발열 과 같은 인자가 폭발 성능에 크게 영향을 미치고, 이것들은 폭발반응에서 생성된 생성물 조성에 좌우되게 된다. 본 연구에서는 4가지 화학 양론적 규칙(Kamlet-Jacobs, Kistiakowsky-Wilson, modified Kistiakowsky-Wilson, Springall-Roberts 규칙)을 통해 65종 고에너지물질의 폭발 생성물 조성을 계산하였고, 이를 K-J, Rothstein, Xiong, Stine, Keshavarz등이 제안한 폭발속도식에 적용하였다. 각 계산된 방법별로 실험값에 대한 평균절대오차와 평균제곱근오차를 얻었다. 다소 복잡한 K-J와 Xiong식은 간단한 Keshavarz 식과 Rothstein식보다 더 낮은 평균절대오차를 나타내었다. 또한 mod-KW규칙으로 생성물을 계산하여 Xiong의 식에 적용하였을 때, 폭발속도들이 가장 정확했다. 이 연구는 고에너지물질의 정확한 성능을 얻기 위하여 폭발속도를 계산하는 다양한 방법을 비교하였다.

질소가 풍부한 헤테로 고리화합물에 기초한 에너지 염의 고에너지 물질 성능에 대한 이론 연구 (Computational Study of Energetic Salts Based on the Combination of Nitrogen-rich Heterocycles)

  • 우제헌;서현일;김승준
    • 대한화학회지
    • /
    • 제66권3호
    • /
    • pp.185-193
    • /
    • 2022
  • 본 연구에서는 tetrazine과 oxadiazole 등의 질소가 많이 함유되어 있는 헤테로 고리화합물을 가진 음이온과 NH2OH, NH2NH2, CH8N6, C2H5N5 등의 양이온들과의 이온 결합을 통하여 생성된 에너지 염(energetic salts)에 대하여 열역학적 안정성, 밀도, 그리고 폭발 성능 등을 밀도 범함수 이론(dentisy functional theory, DFT)을 이용하여 계산하고 기존의 고성능 에너지 물질들과 비교하였다. 분자 구조 최적화 및 안정화 에너지는 B3LYP/cc-pVDZ 이론 수준에서 그리고 엔탈피 계산은 G2MP2 이론 수준에서 계산하였으며 폭발 성능은 Kamlet-Jacobs 방정식을 통하여 계산하였다. 결과적으로 크기가 작은 NH3OH+(1)와 NH2NH3+(2) 양이온을 활용한 에너지 염은 폭발 성능 향상에 도움이 되며, 상대적으로 아미노기(-NH2)가 많은 CH9N6+(3) 양이온은 안정성을 높이는데 효과적일 것으로 예측되었다.