• Title/Summary/Keyword: Kalman

Search Result 2,361, Processing Time 0.027 seconds

Centralized Kalman Filter with Adaptive Measurement Fusion: its Application to a GPS/SDINS Integration System with an Additional Sensor

  • Lee, Tae-Gyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.444-452
    • /
    • 2003
  • An integration system with multi-measurement sets can be realized via combined application of a centralized and federated Kalman filter. It is difficult for the centralized Kalman filter to remove a failed sensor in comparison with the federated Kalman filter. All varieties of Kalman filters monitor innovation sequence (residual) for detection and isolation of a failed sensor. The innovation sequence, which is selected as an indicator of real time estimation error plays an important role in adaptive mechanism design. In this study, the centralized Kalman filter with adaptive measurement fusion is introduced by means of innovation sequence. The objectives of adaptive measurement fusion are automatic isolation and recovery of some sensor failures as well as inherent monitoring capability. The proposed adaptive filter is applied to the GPS/SDINS integration system with an additional sensor. Simulation studies attest that the proposed adaptive scheme is effective for isolation and recovery of immediate sensor failures.

Quadratic Kalman Filter Object Tracking with Moving Pictures (영상 기반의 이차 칼만 필터를 이용한 객체 추적)

  • Park, Sun-Bae;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • In this paper, we propose a novel quadratic Kalman filter based object tracking algorithm using moving pictures. Quadratic Kalman filter, which is introduced recently, has not yet been applied to the problem of 3-dimensional (3-D) object tracking. Since the mapping of a position in 2-D moving pictures into a 3-D world involves non-linear transformation, appropriate algorithm must be chosen for object tracking. In this situation, the quadratic Kalman filter can achieve better accuracy than extended Kalman filter. Under the same conditions, we compare extended Kalman filter, unscented Kalman filter and sequential importance resampling particle filter together with the proposed scheme. In conculsion, the proposed scheme decreases the divergence rate by half compared with the scheme based on extended Kalman filter and improves the accuracy by about 1% in comparison with the one based on unscented Kalman filter.

Assessment of Backprojection-based FMCW-SAR Image Restoration by Multiple Implementation of Kalman Filter (Kalman Filter 복수 적용을 통한 Backprojection 기반 FMCW-SAR의 영상복원 품질평가)

  • Song, Juyoung;Kim, Duk-jin;Hwang, Ji-hwan;An, Sangho;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1349-1359
    • /
    • 2021
  • Acquisition of precise position and velocity information of GNSS-INS (Global Navigation Satellite System; Inertial Navigation System) sensors in obtaining SAR SLC (Single Look Complex) images from raw data using BPA (Backprojection Algorithm) was regarded decisive. Several studies on BPA were accompanied by Kalman Filter for sensor noise oppression, but often implemented once where insufficient information was given to determine whether the filtering was effectively applied. Multiple operation of Kalman Filter on GNSS-INS sensor was presented in order to assess the effective order of sensor noise calibration. FMCW (Frequency Modulated Continuous Wave)-SAR raw data was collected from twice airborne experiments whose GNSS-INS information was practically and repeatedly filtered via Kalman Filter. It was driven that the FMCW-SAR raw data with diverse path information could derive different order of Kalman Filter with optimum operation of BPA image restoration.

Reduced-Order Unscented Kalman Filter for Sensorless Control of Permanent-Magnet Synchronous Motor

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.683-688
    • /
    • 2017
  • The unscented Kalman filter features a direct transforming process involving unscented transformation for removing the linearization process error that may occur in the extended Kalman filter. This paper proposes a reduced-order unscented Kalman filter for the sensorless control of a permanent magnet synchronous motor. The proposed method can reduce the computational load without degrading the accuracy compared to the conventional Kalman filters. Moreover, the proposed method can directly estimate the electrical rotor position and speed without a back-electromotive force. The proposed Kalman filter for the sensorless control of a permanent magnet synchronous motor is verified through the simulation and experimentation. The performance of the proposed method is evaluated over a wide range of operations, such as forward and reverse rotations in low and high speeds including the detuning parameters.

Observer design with Gershgorin's disc

  • Si, Chen;Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.4
    • /
    • pp.41-48
    • /
    • 2013
  • Observer design for system with unknown input was carried out. First, Kalman filter was considered to estimate system state with White noise. With the results of Kalman filter design, state observer, controller properties, including controllability and observability, and the Kalman filter structure and algorithm were also studied. Kalman filter algorithm was applied to Position and velocity measurement based on Kalman filter with white noise, and it was constructed and achieved by programming based on Matlab programming. Finally, observer for system with unknown input was constructed with the help of Gershgorin's disc theorem. With the designed observer, system states was constructed and applied to system with unknown input. By simulation results, estimation performance was verified. In this project, state feedback control theory, observer theory and relevant design procedure, as well as Kalman filter design were understood and used in practical application.

Nonlinearity-Compensation Extended Kalman Filter for Handling Unexpected Measurement Uncertainty in Process Tomography

  • Kim, Jeong-Hoon;Ijaz, Umer Zeeshan;Kim, Bong-Seok;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1897-1902
    • /
    • 2005
  • The objective of this paper is to estimate the concentration distribution in flow field inside the pipeline based on electrical impedance tomography. Special emphasis is given to the development of dynamic imaging technique for two-phase field undergoing a rapid transient change. Nonlinearity-compensation extended Kalman filter is employed to cope with unexpected measurement uncertainty. The nonlinearity-compensation extended Kalman filter compensates for the influence of measurement uncertainty and solves the instability of extended Kalman filter. Extensive computer simulations are carried out to show that nonlinearity-compensation extended Kalman filter has enhanced estimation performance especially in the unexpected measurement environment.

  • PDF

Development of Kalman Hybrid Redundancy for Sensor Fault-Tolerant of Safety Critical System (Safety Critical 시스템의 센서 결함 허용을 위한 Kalman Hybrid Redundancy 개발)

  • Kim, Man-Ho;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1180-1188
    • /
    • 2008
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly in the safety critical system such as intelligent vehicle. In order to make system fault tolerant, there has been a body of research mainly from aerospace field including predictive hybrid redundancy by Lee. Although the predictive hybrid redundancy has the fault tolerant mechanism to satisfy the fault tolerant requirement of safety crucial system such as x-by-wire system, it suffers form the variability of prediction performance according to the input feature of system. As an alternative to the prediction method of predictive hybrid redundancy for robust fault tolerant, Kalman prediction has attracted some attention because of its well-known and often-used with its structure called Kalman hybrid redundancy. In addition, several numerical simulation results are given where the Kalman hybrid redundancy outperforms with predictive smoothing voter.

Discrete-time robust Kalman filter design in indefinite inner product space

  • Lee, Tae-Hoon;Park, Jin-Bae;Yoon, Tae-Sung;Ra, Won-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.45.2-45
    • /
    • 2002
  • $\textbullet$ Uncertainties are described by sum quadratic constraint(SQC) $\textbullet$ SQC is converted into an indefinite quadratic cost function $\textbullet$ A Kalman filter developed in indefinite inner product space is Krein space Kalman filter $\textbullet$ To minimize the SQC, the Krein space Kalman filter is used $\textbullet$ The proposed robust filter outperforms the standard Kalman filter and existing robust Kalman filter $\textbullet$ The proposed filter has the same recursive, simple structure as the standard Kalman filter $\textbullet$ Easy to design, adequate for on-line implementation

  • PDF

A Study on the Kalman Filter ; AR Model (자기회귀 모형에 대한 Kalman Filter 적용에 관한 연구)

  • 신용백;윤상원;윤석환;변화성
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.16 no.28
    • /
    • pp.31-37
    • /
    • 1993
  • Box-Jenkins models have some important limitations to the procedure : (a) They require a great deal of time, efforts and expertise for the model identification. (b) They require an extensive amount of past observations to identify an acceptable model. (c) The model selected is a constant model in time. Therefore, the Kalman Filter is recommended as a technique to overcome the three problems mentioned above. The research reported here uses the Kalman Filter algorithm to propose Kalman-AR(p) model. The data analysis shows that the Kalman-AR(p) model proposed can be used to resolve the problems of Box-Jenkins AR(p)model. It is seen that the Kalman Filter has great potentials for real-time industrial applications.

  • PDF

Aircraft parameter estimation using the extended kalman filter (확장 칼만 필터를 이용한 항공기 파라미터 추정)

  • 송용규;황명신;박욱제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1655-1658
    • /
    • 1997
  • To obtain aircraft dynamic parameters, various estimation methods such as Maximum Likelihood, Linear Regression are applied. In this paper we adopt the extended Kalman filter(EKF) to estimate the stability and control derivatives in aircraft dynamic models from flight test data. The extended Kalman filter is applied to nonlinear augmented system assuming that unknown parameters are additional states. In this work, the results of the extended Kalman filter are compared with the results of the wind tunnel test using Chang Gong-91 aircraft flight test data.

  • PDF