• 제목/요약/키워드: Kaempferol glycoside

검색결과 53건 처리시간 0.024초

Further Flavonol Glycosides from Myrsine africana Leaves

  • Arot, Lawrence O. Manguro;Midiwo, Jacob Ogweno;Kraus, Wolfgang
    • Natural Product Sciences
    • /
    • 제3권1호
    • /
    • pp.8-10
    • /
    • 1997
  • A new flavonol glycoside, quercetin 3-rhamnosyl $(1{\rightarrow}3)$ galactoside [5] was isolated from the leaves of M. africana. The known compounds kaempferol 3-rutinoside [1], 3'-O-methylquercetin 3-rutinoside [2], quercetin 3-rutinoside [3], and quercetin 3-rhamnosyl $(1{\rightarrow}6)$ galactoside [4] were also isolated for the first time from this plant. Their structures were determined by chemical and spectroscopic methods.

  • PDF

Inhibitory Effects of Kaempferol-7-O-β-D-glucoside on LPS-induced NO, PGE2 and Inflammatory Cytokines Production in RAW264.7 Macrophages (LPS유도 대식세포에서 Kaempferol-7-O-β-D-glucoside의 NO, PGE2 및 염증성 사이토카인 생성 저해 효과)

  • Park, Jong Cheol;Han, Hee-Soo;Lee, Seung-Bin;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • 제47권4호
    • /
    • pp.295-300
    • /
    • 2016
  • Flavonoids are widely reported to be beneficial to human health. Among flavonoids, in general, flavonoid aglycons have better biological activities than flavonoid glycosides, in that aglycons can easily penetrate through cell membrane because of their low polarity. Therefore, kaempferol, quercetin and various their glycosides were evaluated for their abilities to inhibit NO and $PGE_2$ productions in LPS-induced RAW 264.7 cells. Of these flavonoids and flavonoid glycosides, kaempferol-7-O-${\beta}$-D-glucoside(kp-7-glu) which possesses a glycoside at C-7 position of the A ring in kaempferol, potently inhibited NO, $PGE_2$ and $TNF-{\alpha}$, $IL-1{\beta}$, IL-6 productions in LPS-induced RAW 264.7 macrophages.

Anti-oxidant Compounds of Cudrania tricuspidata Leaves (구지뽕나무 잎의 항산화 성분)

  • Chon, In Ju;Lee, Seong Wan;Cha, Ja Hyun;Han, Jeong Hoon;Whang, Wa Kyunn
    • YAKHAK HOEJI
    • /
    • 제49권5호
    • /
    • pp.416-421
    • /
    • 2005
  • Cudrania tricuspidata Bereau (Moraceae) have been used for anti-inflammatory, anti-hepatotoxic, anti-hyper­tensive and anti-diabetic activities. In order to investigate the efficacy of antioxidant activity, the bio-activity guided fraction and isolation of Biologically active substance were performed. $H_{2}O,\;30\%,\;60\%,\;100%$ MeOH and acetone fractions were examined on the antioxidant activity by DPPH method. It was shown that $30\%,\;60\%,\;100\%$ MeOH fractions have sig­nificantly antioxidant activity. From $30\%$ MeOH fraction, two dihydroflavonoid glycosides dihydroquercetin 7-O-$\beta$-D-glu­copyranoside (I), dihydrokaempferol 7-O-$\beta$-D-glucopyranoside (V) were isolated and $60\%$ MeOH fraction, six flavonoids including quercetin 3-O-$\alpha$-L-rhamnopyranosyl($1\rightarrow6$)-$\beta$-D-glucopyranoside (II), quercetin 3-O-$\beta$-D-glucopyranoside (III), quercetin 7-O-$\beta$-D-glucopyranoside (IV), kaempferol 3-O-$\alpha$-L-rhamnopyranosyl($1\rightarrow6$)-$\beta$-D-glucopyranoside (VI), kaempferol 3-O-$\beta$-D-glucopyranoside (VII), kaempferol 7-O-$\beta$-D-glucopyranoside (VIII) were isolated. To investigate the antioxidant activities of each compounds, we measured radical scavening activity with DPPH method and anti-lipid per­oxidative efficacy on low density lipoprotein (LDL) with TBARS assay. Four compounds of quercetin glycosides (I, II, III, IV) showed significant antioxidant activity.

Effect of Methanol Extract and Kaempferol Glycosides from Armoracia rusticana on the Formation of Lipid Peroxide in Bromobenzene-treated Rats In Vitro (서양고추냉이 추출물과 분리한 Kaempferol 배당체들의 브로모벤젠 처리 흰쥐에서 in Vitro 지질과산화억제효과)

  • Hur, Jong-Moon;Lee, Jong-Ho;Choi, Jong-Won;Hwang, Gi-WUk;Chung, Shin-Kyo;Kim, Moon-Sung;Park, Jong-Cheol
    • Korean Journal of Pharmacognosy
    • /
    • 제29권3호
    • /
    • pp.231-236
    • /
    • 1998
  • Three flavonoid glycosides have been isolated from the aerial part of Armoracia rusticana P. (Cruciferae) in Korea and identified by means of spectral analysis as $kaempferol-3-O-{\beta}-D-xylofuranoside(l)$, $kaempferol-3-O-{\beta}-D-galactopyranoside(2)$ and $kaempferol-3-O-{\beta}-D-xylofuranosyl(1\rightarrow2)-b{\beta}-D-galactopyranoside(3)$. When 1 mg/ml of the methanol extract from the aerial part of this plant was added, lipid peroxide formation in the bromobenzene-treated rat liver decreased by 64%. Among the components isolated from title plant, compounds 2 and 3 reduced the formation of lipid peroxide by 16% and 39% respectively at the concentration of ${10}^{-1}$ mg/ml.

  • PDF

Isolation and Characterization of Antioxidative Compounds from the Aerial Parts of Angelica keiskei

  • Kim, So-Joong;Cho, Jeong-Yong;Wee, Ji-Hyang;Jang, Mi-Young;Kim, Cheol;Rim, Yo-Sup;Shin, Soo-Cheol;Ma, Seung-Jin;Moon, Jae-Hak;Park, Keun-Hyung
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.58-63
    • /
    • 2005
  • Ethyl acetate-soluble neutral fraction of hot water extracts from the aerial parts of Angelica keiskei showed a 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity. Six antioxidative compounds were purified and isolated by various chromatographic procedures. Based on the analyses of FAB-MS and NMR, the isolated compounds were structurally elucidated as luteolin 7-O-${\beta}$-D-glucopyranoside (1), quercetin 3-O-${\beta}$-D-galactopyranoside (2), quercetin 3-O-${\beta}$-D-glucopyranoside (3), quercetin 3-O-${\alpha}$-D-arabinopyranoside (4), kaempferol 3-O-${\alpha}$-D-arabinopyranoside (5), and luteolin 7-O-rutinoside (6). The glycosides of flavonols and luteolin showed DPPH radical-scavenging activity. One molecule of 2, 3, 4, 6, 1, and 5 scavenged 4.2, 4.2, 4.1, 2.5, 2.2, and 1.4 molecules of DPPH radical, respectively.

Isolation of Biologically Active Compounds from the Flower Petals of Carthamus tinctorius L. (홍화(Carthamus tinctorius L.)로부터 활성물질의 분리)

  • Kim, Yung-Hee;Ahn, Eun-Mi;Bang, Myun-Ho;Nam, Ji-Youn;Kwon, Byung-Mok;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • 제41권2호
    • /
    • pp.197-200
    • /
    • 1998
  • The MeOH extracts obtained from the flower petals of Carthamus tinctorius were solvent-fractionated with EtOAc, n-BuOH, and $H_2O$, successively. From the n-BuOH extract 2 flavonoid compounds were isolated through the repeated silica gel column chromatographies. From not only the results of physico-chemical data including HMBC but also the adaptation of acid hydrolysis, the chemical structures of the compounds were determined as $3-O-[{\beta}-D-glucopyranosyl(1{\rightarrow}2)\;{\beta}-D-glucopyranosyl]\;kaempferol$ and $3-O-[{\alpha}-L-rhamnopyranosyl(1{\rightarrow}6)\;{\beta}-D-glucopyranosyl]\;kaempferol$. The compounds exhibited $IC_{50}$ values in Grab2-Shc activity to be 43 and $47{\mu}g/ml$, respectively.

  • PDF

Cellular Protective Effects and Mechanisms of Kaempferol and Nicotiflorin Isolated from Annona muricata against 1O2-induced Damage (그라비올라로부터 분리된 Kaempferol 및 Nicotiflorin의 1O2으로 유도된 세포손상에 대한 보호 효과와 그 메커니즘)

  • Park, So Hyun;Shin, Hyuk Soo;Lee, Nan Hee;Hong, In Kee;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • 제29권1호
    • /
    • pp.49-55
    • /
    • 2018
  • In this study, we investigated the cellular protective effects and mechanisms of nicotiflorin and its aglycone kaempferol isolated from Annona muricata. The protective effect of these components against $^1O_2$-induced cell damage was also studied by using L-ascorbic acid and (+)-${\alpha}$-tocopherol as controls. Kaempferol exhibited the most potent protective effect, followed by (+)-${\alpha}$-tocopherol and nicotiflorin. L-Ascorbic acid did not exhibit any cellular protective effects. To elucidate the mechanism underlying protective effects, the quenching rate constant of the singlet oxygen, free radical-scavenging activity, ROS-scavenging activity, and uptake ratio of the erythrocyte membrane were measured. The results showed that the cell membrane penetration is a key factor determining the cellular protective effect of kaempferol and its glycoside nicotiflorin. The result from L-ascorbic acid demonstrated that the cellular protective effect of a compound depends on its ability to penetrate the cell membrane and is independent of its antioxidant capacity. In addition, it is suggested that cellular protective effects of kaempferol and (+)-${\alpha}$-tocopherol depend not only on the cell permeability, but also on free radical- and ROS-scavenging activities. These results indicate that the cell permeability and free radical- and ROS- scavenging activities of antioxidants are major factors affecting the protection of cell membranes against the oxidative damage induced by photosensitization reaction.

Pharmaco-Constituents of Korean Cultivated Rhubarb Leaves -The Flavonoids from Leaves- (한국산 재배대황엽의 약효성분 -엽의 후라보노이드-)

  • Ham, In-Hye;Oh, In-Se;Whang, Wan-Kyunn;Kim, Il-Hyuk
    • YAKHAK HOEJI
    • /
    • 제38권4호
    • /
    • pp.469-475
    • /
    • 1994
  • As the continued studies for Korean cultivated rhubarb, MeOH extract of the leaves was fractionated with ether, ethylacetate, and n-butanol. From the ethyl acetate fraction of MeOH extract, one flavone glycoside, apigenin-8-${\beta}$-D-glucopyranoside(vitexin, $C_{21}H_{20}O_{10}$) and from the n-BuOH fraction of MeOH extract, two flavonol glycosids, kaempferol-3-O-(2,6-di-O-rhamnopyranosyl)-${\beta}$-D-galactopyranoside$(C_{33}H_{40}O_{19})$and quercetin-3-O-rutinoside(rutin, $C_{27}H_{30}O_{16}$) were isolated and identified through the physico-chemical properties and spectroscopic evidences(UV, IR, NMR, Mass) respectively.

  • PDF

Studies on the Chemical Constituents of Lysimachia Clethroides (큰까치수영의 구성성분)

  • 김진숙;김형자;박호군
    • YAKHAK HOEJI
    • /
    • 제37권4호
    • /
    • pp.325-330
    • /
    • 1993
  • Four flavonoide glycosides and (-)-Epicatechin were isolated from the aqueous extracts of dried whole part of Lysimachia clethroides Duby(Primulaceae). They were 3-0-Methyl-quercetin-7-0-[$\alpha$-L- rhamnopyranosyl (1-2) glucopyranoside], Quercetin-3-0-$\beta$-D-glucopyranoside, Kaempferol-3-0-$\beta$-D-glucopyranoside, Kaempferol-3-0-[$\alpha$-L-rhamnopyranosyl (1-6)-$\beta$-D-glucopyranoside] and (-)-Epicatechin. 3-0-[$\alpha$-L-rhamnopyranosyl (1-6)-$\beta$-D-glucopyranoside]and (-)-Epicatechin. 3-0-Methyl-quercetin-7-0-[$\alpha$-L-rhamnopyranosyl (1-2)-$\beta$-D-glucopyranoside] and (-)-Epicatechin were first isolated from this plant. Their structures were elucidated by spectral analysis [$^{1}$H-, $^{13}C-$ NMR, $^{1}$H-$^{1}$H-COSY, DEPT-analysis, HMQC(Heteronuclear multiple quantum coherence), FAB-MS].

  • PDF