• Title/Summary/Keyword: Kaempferol glycoside

Search Result 53, Processing Time 0.022 seconds

Changes in Flavonol Glycoside Contents of Orostachys Japonicus a. Berger according to Cultivation Conditions (재배 조건에 따른 바위솔의 Flavonol Glycoside 함량 변화)

  • Jang, Sang-Hun;Kang, Dong-Min;Kang, Jin-Ho;Park, Jong-Cheol;Lee, Sang-Gyeong;Shin, Sung-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.6
    • /
    • pp.250-254
    • /
    • 2005
  • The contents of flavonol glycosides, $kaempferol-3-O-{\beta}-D-glucoside$(1), $kaempferol-3-O-{\beta}-D-glactoside$ (2), $kaempferol-3-O-{\beta}-D-rhamnoside$ (3), $quercetin-3-O-{\beta}-D-glucoside$ (4) and $quercetin-3-O-{\alpha}-D-rhamnoside$ (5) in the houseleeks controlled by night-break, day-length control, and temperature during overwintering were determined to be compared with those in wild one. The contents of the flavonol glycosides 1-5 in the houseleeks were decreased roughly with warming during overwintering, and increased with longer light duration under the day-length control experiments. While warming functioned negatively on the production of the flavonol glycosides in the houseleek, longer light irradiation did positively during overwintering.

Seasonal Variations of the Flavonol Glycoside Content from Ginkgo biloba Leaves (은행잎중 Flavonol Glycoside 성분의 계절별 함량 변화에 관한 연구)

  • Kang, Gyu-Sun;Youm, Jeong-Rok;Kang, Sam-Sik
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.1
    • /
    • pp.47-53
    • /
    • 1993
  • The seasonal variations of the major six flavonol glycosides(kaempferol 2,6-dirhamnosyl glucoside, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, isorhamnetin 3-O-rutinoside, quercetin 3-O-coumaroyl glucorhamnoside and kaempferol 3-O-coumaroyl glucorhamnoside) in Ginkgo biloba leaves were investigated. The contents were determined by HPLC on reversed phase $C_{18}$ column. This result showed that the percentage of six flavonol glycosides decreased during the season from 1.57% in May to 0.39% in November. The content of each flavonol glycoside indicated a similar tendency to decrease. However, the contents of rutinosides of kaempferol, quercetin and isorhamnetin fluctuated markedly than those of coumaroyl glucorhamnosides of kaempferol and quercetin and kaempferol 2,6-dirhamnosyl glucoside.

  • PDF

Isolation of Kaempferol Glycoside from Lindera sericea and Anti-inflammatory Effect (털조장나무잎의 소염활성 및 Kaempferol 배당체의 분리)

  • 박종철;박주권;김종홍;김성환;김남재
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.3
    • /
    • pp.519-522
    • /
    • 1996
  • From the leaves of Lindera sericea Bl., kaempferol-3,7-0-di-a-L-rhamnopyranoside was isolated and characterized by spectral data and acid hydrolysis. This compound is reported for the first time from this plant. The content of kaempferol glycoside was high in May and June, and low in the fall. And the methoanolic extract of title plant showed the inhibitory effect on carrageenin-induced edema.

  • PDF

Studies on Flavonoid Glycoside of the leaves of Viola diamantica (금강제비꽃 잎의 Flavonoid 배당체(II))

  • Yook, Chang-Soo;Lee, Woo-Tchul;Moon, Chang-Kiu
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.124-128
    • /
    • 1989
  • The drug consists of the dried entire plant of Viola diamantica (family Violaceae). It is used for the treatment of acute pyogenic diseases such as boil and carbuncles; also as tumor, high fever, tuberculosis and astringent hemostatic. Two flavonol glycosides have been isolated from the aerial parts of Viola diamantica and could be identifed as kaempferol 7-rhamnoside and kaempferol 3,7-dirhamnoside (bright yellow needle crystal, mp $225^{\circ}$, $C_{27}\;H_{30}\;O_4\;4H_2O$). Kaempferol 7-rhamnoside and kaempferol 3,7-dirhamnoside were first isolated from Viola diamantica.

  • PDF

Flavonol Glycoside from the Aerial Part of Filipendula Formosa (지리터리풀의 플라보놀배당체)

  • 황완균;함인혜;성환길;이무택
    • YAKHAK HOEJI
    • /
    • v.43 no.1
    • /
    • pp.5-10
    • /
    • 1999
  • As one of the serial studies on the specific and indigenous plants of Mt. Chiri the constituents of aerial part from filipendula formosa (Rosaceae) were investigated. From of the MeOH extract, five flavonol glycosides, kaempferol-3-O-$\beta$-D-galactopyranoside, querecetin-3-O-$\beta$-D-galactopyranoside, quercetin-3-O-$\alpha$-Lrhamopyranosyl (1 6)-$\beta$-D-galactopyranoside, kaempferol-3-O-$\alpha$-L-rhamnopyranosyl (1 6)-$\beta$-D-galactopyranoside and quercetin-7-O-$\beta$-D-glucopyranosy-3-O-$\beta$-D-galactopyranoside were isolated by column chromatographic separation using Amberlite XAD-2 and Sephadex LH-20, and identified physicochemical evidences (IR, FAB-Mass, $^1H,{\;}^{13}C-NMR$).

  • PDF

Antioxidative Properties of Ginseng Leaf Flavonoids on Cellular Membranes

  • Park, Soo-Nam;San
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-17
    • /
    • 1990
  • The major flavonoid component of Ginseng leaf is trifolin, a glycoside of kaempferol. To evaluate the antioxidative properties of trifolin and kaempferol on cellular membranes, we compared them with the other flavonoids through the 102-Induced photohemolysis of rabbit erythrocytes. All the flavonoid aglycones including kaempferol, quercetin and baicalein protected effectively the cells from the 102-caused damage in a dose- dependent manner, by scavenging 102 and free radicals in the cellular membranes. The solubilization of the flavonoid aglycones into micelles or erythrocyte membranes was deduced from spectro-photometric and microscopic observations. The flavonoid glycosides were not protective or less protective than their corresponding aglycones, and trifolin was the only glycoside that exhibited a solubilization into the membranes and a significant protection against the photohemolysis. We also tested some phenolic compounds contained in Ginseng, and found that they did not prevent the photohemolysis so effectively as kaempferol or trifolin.

  • PDF

Component Analysis and Study on Anti-elastase Activity of Equisetum arvense Extracts(II) (쇠뜨기 추출물의 성분 분석과 엘라스타제 활성 저해 효과 연구(II))

  • Park, Soo-Nam;Yang, Hee-Jung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.3
    • /
    • pp.139-144
    • /
    • 2007
  • In the previous study, we reported the antioxidative activity of Equisetum arvense extracts. In this study, its inhibitory effect on elastase and components were investigated. Aglycone fractions obtained from the deglycosylation reaction of ethylacetate fraction among the Equisetum arvense extracts, showed 4 bands and 4 peaks in TLC and HPLC experiments, respectively. Four components were identified as luteolin(composition ratio, 19.12%), quercetin(12.87), apigenin(15.81) and kaempferol(52.20). TLC chromatogram of ethylacetate fraction of Equisetum arvense extract revealed 7 bands and HPLC chromatogram showed 8 peaks, which were identified as kaempferol-3,7-O-diglucoside(composition ratio, 15.74%), luteolin-5-O-glucoside(galuteolin, 11.91), apigenin-5-O-glucoside(12.91), kaempferol-3-O-glucoside(astragalin, 27.94), quercetin-glycoside(10.81, structure was not determined), kaempferol-glycoside (12.33, structure was not determined), luteolin(3.72) and apigenin(4.62) in the order of elution time. The inhibitory effect of aglycone fraction on elastase($IC_{50}$, $9.8{\mu}g/mL$) was very high. But ethylacetate fraction(flavonoid glycosides) rarely exhibited the inhibitory activity on elastase. Combined with the previous results of the antioxidative activity of Equisetum arvense extracts, it is concluded that the inhibitory activity on elastase of the aglycone fraction could be applicable to new functional cosmetics for smoothing wrinkles.

Identification and Quantitative Analysis of Flavonol Glycosides from Ginkgo biloba Leaves by High Performance Liquid Chromatography (고속액체크로마토그라피에 의한 은행잎중 Flavonoid Glycoside의 확인 및 정량)

  • Kang, Sam-Sik;Kim, Ju-Sun;Kwak, Wie-Jong;Kim, Ki-Hyup
    • Korean Journal of Pharmacognosy
    • /
    • v.21 no.2
    • /
    • pp.148-152
    • /
    • 1990
  • Seven flavonol glycosides from the EtOAc fraction of Ginkgo biloba leaves were identified by high performance liquid chromatography. Separation by reversed phase chromatography on $Lichrosorb^{\circledR}$ RP-18 column was achieved by isocratic elution. The content of the major acylated flavonol glycoside, kaempferol 3-0-[$6'-O-{p}-coumaroyl-{\beta}-_D-glucosyl(1{\rightarrow}2)-{\alpha}-_L-rhamnoside$] was about 8.0% and 0.55% for EtOAc fraction and MeOH extract, respectively.

  • PDF

Flavonoids from the Leaves of Ginkgo biloba (은행잎의 Flavonoid 성분에 관한 연구)

  • Kang, Sam-Sik;Kim, Ju-Sun;Kwak, Wie-Jong;Kim, Ki-Hyup
    • Korean Journal of Pharmacognosy
    • /
    • v.21 no.2
    • /
    • pp.111-120
    • /
    • 1990
  • Five biflavones and sevenflavonolglycosideswereisolatedfromtheleaves of Ginkgo biloba. They were sciadopitysin(1), ginkgetin(2), isoginkgetin(3), bilobetin(4), amentoflavone(5), kaempferol 3-O-[$6'-O-{\rho}-coumaroyl-{\beta}-_D-glucopyranosyl(1{\rightarrow}2)-{\alpha}-_Lrhamnopyranoside$](6), quercetin 3-O-[$6'-O-{\rho}-coumaroyl-{\beta}-_D-glucopyranosyl(1{\rightarrow}2)-{\alpha}-_Lrhamnopyranoside$](8), rutinosides of kaempferol(7), isorhamnetin(9), quercetin(10), laricitrin(11), and kaempferol 3-O-($2',6'-{\alpha}-_L-dirhamnopyranosyl-{\beta}-_{D}-glucopyranoside$)(12). The structures were established by spectroscopic and chemical methods.

  • PDF

Flavonoids from Leaves and Exocarps of the Grape Kyoho

  • Park, Hye-Jeong;Cha, Hyeon-Cheol
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.327-330
    • /
    • 2003
  • We analyzed and compared profiles of flavonols extracted from leaves and exocarps of the grape Kyoho by TLC, HPLC and UV spectrophotometry. In the exocarps, quercetin 3-O-glucoside was the main compound while isorhamnetin 3-O-glycoside (I) was present in minor amounts. In leaves, on the other hand, quercetin 3-O-glucoside and quercetin 3-O-glucoside-7-O-glucronide were the major compounds while isorhamnetin 3-O-glycoside (II) and kaempferol 3, 7-O-diglycoside were present in minor amounts.