• Title/Summary/Keyword: KSM

Search Result 53, Processing Time 0.025 seconds

Effects of KSM on the Cytotoxicity of Amyloid β Protein and the APP's Molecular Weight (가미신선불로단이 알츠하이머병 진단지표인 아리로이드 단백독성과 APPr에 미치는 영향)

  • Eom Hyun Sup
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.53-57
    • /
    • 2004
  • In order to evaluate the neuroprotective effects of Kamisinsunbulo-dan(KSM), the cytotoxicity of amyloid β and the recovering effect of KSM were checked at first. Then the viability of C6 cells was tested in comparison with each concentration of KSM. The cytotoxicity of amyloid β(31-35) showed from 5 μM higher to 100 μM. And the recovering effect by KSM showed significantly at 100㎍/㎖. concentration. And the cell viability was shown significantly over 200 ㎍/㎖ of KSM. This is thought that the viability has some relation to length of culturing duration, 6 to 12 hrs. Lastly in the western blotting of APP, the amount of low molecule's APP was decreased. So the APP form ratio(APPr) changed to increase, and it meant that KSM can be used to lower the toxic APP, and can be a candidate for Alzheimer's disease.

Structure Elucidation and Antibacterial Activity of Oxazolomycin Family KSM-2690 B Derived from Actinomycete Collected in Jeju Island (제주도 방선균 유래 oxazolomycin 계열 KSM-2690 B의 구조 결정과 항균활성에 관한 연구)

  • Hyeongju Jeong;Jooyoung Kim;Soohyun Um;Kyuho Moon
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.1
    • /
    • pp.16-20
    • /
    • 2023
  • KSM-2690 B (1), a peptide-polyketide hybrid compound, was discovered from an actinomycete strain (CJD 1) isolated from Dong-Baek hill on Jeju Island, Republic of Korea. The chemical structure of 1 was identified by using NMR, MS, and UV spectroscopic analyses. Careful analysis of 1D and 2D NMR data revealed that KSM-2690 (1) has an oxazole ring, a β-lactone-γ-lactam spirocycle ring, and both triene and diene structures. KSM-2690 B (1) showed inhibitory activities against E. coli at 200 ㎍/mL.

A Software Quality Prediction Model Without Training Data Set (훈련데이터 집합을 사용하지 않는 소프트웨어 품질예측 모델)

  • Hong, Euy-Seok
    • The KIPS Transactions:PartD
    • /
    • v.10D no.4
    • /
    • pp.689-696
    • /
    • 2003
  • Criticality prediction models that determine whether a design entity is fault-prone or non fault-prone are used for identifying trouble spots of software system in analysis or design phases. Many criticality prediction models for identifying fault-prone modules using complexity metrics have been suggested. But most of them need training data set. Unfortunately very few organizations have their own training data. To solve this problem, this paper builds a new prediction model, KSM, based on Kohonen SOM neural networks. KSM is implemented and compared with a well-known prediction model, BackPropagation neural network Model (BPM), considering internal characteristics, utilization cost and accuracy of prediction. As a result, this paper shows that KSM has comparative performance with BPM.

Effects of Lipomyces starkeyi KSM 22 Glucanhydrolase on human gingival fibroblasts (Lipomyces starkeyi KSM 22 Glucanhydrolase 용액의 치은 섬유아세포에 대한 영향)

  • Yun, Hyun-Jeong;Chung, Hyun-Ju;Kim, Ok-Su;Kim, Do-Man
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.665-683
    • /
    • 2002
  • A novel glucanhydrolase from a mutant of Lipomyces starkeyi KSM 22 has additional amylase activity besides mutanolytic activity and has been suggested as promising anti-plaque agent. It has been shown effective in hydrolysis of mutan, reduction of mutan formation by Streptococcus mutans and removal pre-formed sucrose-dependent adherent microbial film and has been strongly bound to hydroxyapatitie. These in vitro properties of Lipomyces starkeyi KSM 22 glucanhydrolase are desirable for its application as a dental plaque control agent. In human experimental gingivitis model and 6 month clinical trial, mouthrinsing with Lipomyces starkeyi KSM 22 dextranase was comparable to 0.12% chlorhexidine mouthwash in inhibition of plaque accumulation and gingival inflammation and local side effect was negligible. This study was aimed to evaluate the cytotoxic effect of Lipomyces starkeyi KSM 22 glucanhydrolase on human gingival fibroblasts. Primary culture of human gingival fibroblasts at the 4th to 6th passages were used. Glucanhydrolase solution was made from lyophilized glucanhydrolase powder from a mutant of Lipomyces stakeyi KSM 22 solved in PBS and added to DMEM medium to the final concentration of 0.5, 1, and 2 unit. Cells were exposed to glucanhydrolase solution or 0.1 % chlorhexidine and the cells cultured in DMEM with 10% FBS and 1% antibiotics as control. After exposure, the morphological change, cell attachment, and cell activity by MTT assay were evaluated in 0.5, 1.5, 3, 6, 24 hours after treatment. The cell proliferation and cell activity was also evaluated at 2 and 7 days after 1 minute exposure, twice a day. The cell morphology was similar between the Lipomyces smkeyi KSM 22 glucanhydrolase groups and control group during the incubation periods, while most fibroblasts remained as round cell regardless of incubation time in the chlorhexidine group. The numbers of the attached cells in the glucanhydrolase groups were comparable to that of control and significantly higher than the chlorhexidine group. The numbers of the proliferated cells in the glucanhydrolase groups at 7 days of incubation were comparable to the control group and higher than the chlorhexidine group. The cell activity in glucanhydrolase groups paralleled with the increased cell number by attachment and proliferation. According to these results, Lipomyces starkeyj KSM 22 glucanhydrolase has little harmful effect on attachment and proliferation of human gingival fibroblasts, in contrast to 0.1% chlorhexidine which was cytotoxic to human gingival fibroblasts. Therefore this glucanhydrolase preparation is considered as a safe and promising agent for new mouthwash formula in the near future.

Improvement of the Ammonia Analysis by the Phenate Method in Water and Wastewater

  • Park, Ga-Eun;Oh, Ha-Na;Ahn, Sam-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2032-2038
    • /
    • 2009
  • The amount of phenol and NaOH for the colorimetric determination of ammonia in Korean standard methods (KSM) is found to be highly excessive compared to the standard methods of several other countries. The absorbance of indophenol formed by the Berthelot reaction for ammonia analysis was measured under the various reaction conditions classified in experiment groups 1, 2, 3, 4 and KSM and American standards methods (ASM), and the relationships between the absorbance of indophenol and concentration of ammonia were compared. The amount of phenol can be reduced to 10 g (current 25 g in KSM) and NaOH can be reduced to 1.76 g (current 11 g in KSM) for the preparation of 200 mL phenate solution, and the absorbance sensitivity increased. The concentration of the phenol and NaOH correlatively affect the pH of the solution, which is a critical variable in achieving the maximum sensitivity and rapid and stable color development.

Effect of mouthrinse containing Lipomyces starkeyi KSM 22 glucanhydrolase on plaque formation during a 4-day period (Lipomyces starkeyi KSM 22 glucanhydrolase의 추가가 구강세정액의 치태 억제 효과에 미치는 영향)

  • Seo, Eun-Ju;Chung, Hyun-Ju;Kim, Ok-Su;Kim, Young-Jun;Kim, Sang-Heuk
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.195-204
    • /
    • 2004
  • A novel glucanhydrolase from Lipomyces starkeyi KSM 22 has been suggested as a promising anti-plaque agent because it has been shown to have additional amylase activity and mutanase activity besides dextranase activity and to strongly bind to hydroxyapatite. Mouthrinsing with Lipomyces starkeyi KSM 22 glucanhydrolase solution was comparable to 0.12% chlorhexidine mouthwash in inhibition of plaque accumulation and gingival inflammation and local side effects were less frequent and less intense in human experimental gingivitis. In this study, Lipomyces starkeyi KSM 22 glucanhydrolase mouthrinses (1 and 2 unit/ml) were compared with a control mouthrinse (commercial 0.01% benzethonium chloride mouthrinse, $Caregargle^{(R)}$, Hanmi Pharmaceuticals) in the ability to inhibit plaque formation. A 3-replicate clinical trial using 4-day plaque regrowth model was used. Fifteen volunteers were rendered plaque-free on the 1st day of each study period, ceased toothcleansing, and rinsed 2X daily with allocated mouthrinse thereafter. On day 5, plaque accumulation was scored and the washout periods was 9 days for the next trial. Lipomyces starkeyi KSM22 glucanhydrolase(1 unit and 2 unit)- containing mouthrinse resulted in Significantly lower plaque formation in plaque area and thickness, compared to the control mouthrinse. There was no significant difference in plaque inhibition between enzyme-mouthrinses at 2 different concentrations used. This glucanhydrolase- containing mouthwash resulted in significantly lower plaque area severity index score and tended to have lower plaque thickness severity index score than those of control mouthrinse. But there was no significant difference according to the enzyme concentration. From these results, Lipomyces starkeyi KSM 22 glucanhydrolase-containing benzethonium chloride mouthrinse has greater anti-plaque effect than the commercial mouthrinse alone. Therefore this glucanhydrolase preparation is a promising agent for new mouthwash formulation in the near future.

Synthesis and Crystal Structure of a New Quaternary Chalcoantimonide: KLa2Sb3S9 and KSm2Sb3Se8

  • Kim, Sung-Jin;Park, Sun-Ju;Yim, Sun-Ah
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.485-490
    • /
    • 2004
  • Silver-needle shaped crystals of $KLa_2Sb_3S_9$ from $K_2S_x$ flux and $KSm_2Sb_3Se_8$ from NaCl/KCl flux reactions were obtained and their crystal structures were determined by the single crystal X-ray diffraction method. $KLa_2Sb_3S_9$ crystallizes in the orthorhombic noncentrosymmetric space group $P2_12_12_1$ (No.19) with a unit cell of a = 4.220(3) ${\AA}$, b = 24.145(2) ${\AA}$, c = 14.757(5) ${\AA}$ and Z = 4. $KSm_2Sb_3Se_8$ crystallizes in the orthorhombic space group Pnma (No.62) with a unit cell of a = 16.719(3) ${\AA}$, b = 4.1236(8) ${\AA}$, c = 22.151(4) ${\AA}$ and Z = 4. Both structures have three-dimensional tunnel frameworks filled with $K^+$ ions. $KSm_2Sb_3Se_8$ is an ordered version of $ALn_{1{\pm}X}B_i{4{\pm}X}S_8$, and it is made up of NaCl-type and $Gd_2S_3$-type fragments. $KLa_2Sb_3S_9$ also contains building fragments similar to those of $KSm_2Sb_3Se_8$, however, there are chalcogen-chalcogen bonds in the $Gd_2S_3$-type fragment. The formula of $KLa_2Sb_3S_9$ can be described as $(K^+ )(La^{3+})_2(Sb^{3+})^3(S^{2-})_7(S_2^{2-})$.

Purification and Characterization of a Maltopentaose-producing Amylase from Bacillus megaterium KSM B-404. (Bacillus megaterium KSM B-404으로부터 생산되는 Maltopentaose생성 Amylase의 정제 및 특성)

  • 박제원;김병주;이재우;김영배
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.352-358
    • /
    • 2002
  • An amylase that hydrolyzes starch into maltopentaose as a main product was found in the culture supernatant of a strain of Bacillus megaterium KSM B-404 isolated from local soil. The enzyme was purified 129-fold by ammonium sulfate precipitation, DEAE-Toyopearl and Superdex 75 HR 10/30 column using a FPLC system. The molecular weight of the amylase was determined as about 68 kDa by using SDS-PAGE. Optimum pH and temperature of amylase were found to be $50^{\circ}C$ and pH 6.0~7.0, respectively. The enzyme was stable up to $60^{\circ}C$ by addition of $Ca^{2+}$ and its pH stability was in the range of 6.0~10.0. The activity of enzyme was inhibited by $Cu^{2+}$ $Hg^{2+}$ , and $Fe^{3+}$ and maintained by $Ca^{2+}$ and $Mg^{2+}$ . EDTA and pCMB also showed inhibitory effect to the enzyme. TLC and HPLC analysis of the products of the enzyme reaction showed the presence of maltopentaose(52%), maltotriose (25%), maltose (11%), glucose, and maltotetraose in the starch hydrolysates.

Characterization of Streptomyces sp. KSM-35 and Purificaton of Its Maltotetraose Forming Amylase (Streptomyces sp. KSM-35의 특성과 Maltotetraose 생산성 아밀라제의 정제)

  • Cha, Jin;Kim, Young-Bae;Seo, Byung-Cheol;Park, Kwan-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.633-637
    • /
    • 1994
  • A bacterial strain KSM-35 producing maltotetraose forming amylase was isolated from compost and identified as Streptomyces based on its morphological, cultural, and physiological characteristics. The amylase from Streptomyces sp. KSM-35 culture filtrate was purified by ammonium sulfate precipitation, followed by the liquid chromatographic procedures using DEAE-Toyo pearl and sephadex G-100 with 27.1% activity recovery. The molecular weight of the enzyme was estimated to be 50,000 and the isoelectric point 4.3. The main product by the amylase from soluble starch was maltotetraose which accounted for 56% of all the oligosaccharides detected after 26 hrs of reaction. Maltose (20%o) and maltotriose (16%) were the next important byproducts while glucose and maltopentaose were detected as traces.

  • PDF

The Effect of Dextranase-Containing Mouthwash in Human Experimental Gingivitis (실험적 치은염에서 dextranase 함유 구강 세정액의 양치 효과)

  • Son, Eun-Ju;Kim, Young-Jun;Kim, Do-Man;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.2
    • /
    • pp.401-420
    • /
    • 2001
  • A novel glucanhydrolase from a mutant of Lipomyces starkeyi(KSM 22)has been shown effective in hydrolysis of mutan, reduction of mutan formation by Streptococcus mutans and removal pre-formed sucrose-dependent adherent microbial film and Lipomyces starkeyi KSM 22 dextranase has been strongly bound to hydroxyapatitie. These in vitro properties of Lipomyces starkeyi KSM 22 dextranase are desirable for its application as a dental plaque control agent. This study was performed to determine oral hygiene benefits and safety of dextranase(Lipomyces starkeyi KSM 22 dextranase)-containing mouthwash in human experimental gingivitis. This 3-week clinical trial was placebo-controlled double-blind design evaluating 1U/ml dextranase mouthwash and 0.12% chlorhexidine mouthwash. A total 39 systemically healthy subjects, who had moderate levels of plaque and gingivitis were included. At baseline, 1, 2 and 3 weeks, subjects were scored for plaque(Silness and $L{\ddot{o}e$ plaque index and plaque severity index), gingivitis($L{\ddot{o}e$ and Silness gingival index), and at baseline and 3 weeks of experiment, subjects were scored for plaque(Turesky-Quingley-Hein's plaque index and plaque severity index), tooth stain(Area and severity index system by Lang et al). Additionally, oral mucosal examinations were performed and subjects questioned for adverse symptoms. Two weeks after pre-experiment examinations and a professional prophylaxis, the subjects provided with allocated mousewash and instructed to use 20-ml volumes for 30s twice dailywithout toothbrushing. All the groups showed significant increase in plaque accumulation since 1 week of experiment. During 3 weeks' period, the dextranase group showed the least increase in plaque accumulation of Silness and $L{\ddot{o}e$ plaque index, compared to the chlorhexidine and placebo groups, but chlorhexidine group showed the least increase inplaque accumulation of Turesky-Quingley-Hein's plaque index. As for gingival inflammation, all the groups showed significant increase during 3 weeks of experiment. The dextranase group also showed the least increase in gingival index score, compared to the chlorhexidine as well as the placebo groups. Whereas the tooth stain was increased significantly in the chlorhexidine group, compared to the baseline score and the placebo group since 3 weeks of mouthrinsing. It was significantly increased after 3 weeks in the dextranase group, still less severe than the chlorhexidine group. As for the oral side effect, the dextranase group showed less tongue accumulation, bad taste, compared to the chlorhexidine group. From these results, mouthrinsing with Lipomyces starkeyi KSM 22 dextranase was comparable to 0.12% chlorhexidine mouthwashin inhibition of plaque accumulation and gingival inflammation and local side effects were if anything less frequent and less intense than chlorhexidine, in human experimental gingivitis. All data had provided positive evidence for Lipomyces starkeyi KSM 22 dextranase as an antiplaque agent and suggested that further development of dextranase formulations for plaque control are warranted.

  • PDF