• Title/Summary/Keyword: KS aggregate

Search Result 115, Processing Time 0.026 seconds

The Effect of Fine Aggregate Fineness modulus on Properties High Performance Concrete (잔골재 조립율이 고성능콘크리트의 특성에 미치는 영향)

  • Lee Seung-Han;Jung Yong-Wook;Park Tae-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.388-391
    • /
    • 2004
  • This research investigates how the fineness modulus of fine aggregates and the grain shape of coarse aggregates affects flow characteristics, packing characteristics and compressive strength characteristic. The experimental results, show that increase of the fine aggregate's fineness modulus improved concrete flow, but filling ability was high at over KS regulation extent due to segregation phenomena. It is considered that the improvement of 0.1 spherical rate was effective to concrete fluidity elevation by reducing about $6\%$ of fine aggregate ratio displays which the smallest gap rate of aggregate. Compressive strength was increased to about 0.6MPa everytime F.M. 0.1 of fine aggregate fineness is increased. However, it was decreased to about 9MPa at F.M. 3.5 compared to F.M. 3.0.

  • PDF

Experimental Study on Assumption of Compressive Strength of Recycled Aggregate Concrete by Nondestructive Test to Practical Building (재생골재 콘크리트 실구조물의 비파괴 시험에 의한 압축강도 추정에 관한 실험적 연구)

  • Song, Young-Chan;Shim, Jong-Woo;Jun, Myoung-Hoon;Lee, Sea-Hyun;Lee, Do-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.125-128
    • /
    • 2006
  • As the ministry of construction and transportation established quality standards for recycled aggregate in August, 2005, the consumption of recycled aggregates is expected to be increased in construction fields in the future. Thus the relations between compressive strength of general concretes and that of recycled aggregate concretes which are applied to actual structures are attempted to investigate through non-destruction testing method. Presently Schmitt-Hammer test method is that concrete compressive strength is predicted by measuring surface hardness of concretes, and is well known as the most convenient and simply operated method among many non-destruction testing methods. In this study, cylinder specimen and mock-up were constructed using recycled aggregate concretes made by the first class recycled coarse aggregates and recycled fine aggregates specified in KS F 2573 (recycled aggregate for concrete), and compressive strength of hardened concrete of middle ages was evaluated.

  • PDF

An Experimental Study on the Engineering Properties and Durability of Concrete Using High Quality Recycled Fine Aggregate (고품질 순환모래를 사용한 콘크리트의 공학적 특성 및 내구성능에 관한 실험적 연구)

  • Moon Hyung-Jae;Lee Dong-Heck;Kim Young-Sun;Na Chul-Sung;Kim Jae-Hwan;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.145-148
    • /
    • 2005
  • Recently, because of the increase of management system about waste concrete and the policy of recycling promotion of government, the use of recycled aggregate is rapidly increasing nowadays. But, due to the poverty of quality and the lack of KS standard, the use of recycled fine aggregate is not active. Therefore, it was intended to compare and investigate effects which types of sand and replacement ratio of recycled fine aggregate. As the result of this study, in the case of the recycled replacement ratio of 25$\%$, fresh and engineering properties were higher than those of natural fing aggregates with the exception of durability. Also, because quality according to types of fine aggregate shows the difference between various properties, it was considered that the profound study for this result would be necessary.

  • PDF

Physical Properties of Shale Aggregate and Characteristics of Concrete in Replacement Ratio in Daegu-Kyeongbuk Region (대경권 셰일 골재의 물성 평가 및 치환율 변화에 따른 콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yeo, In-Dong;Choi, Jong-Oh;Bae, Su-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5551-5557
    • /
    • 2012
  • Sedimentary rocks dug up in construction fields are mostly stockpiled for landfill disposal, leading to an increase in construction costs and construction inefficiency. After screening, some of the sandstone can be used as aggregate; however, most of the shale ends up as industrial waste in practice. In this study, to stabilize the demand and develop resources for alternative aggregates of concrete, the potential use of shale, which is widely distributed in the Daegu-Kyeongbuk region, as a concrete aggregate was evaluated. Red and black shale exported from a Daegu excavation site was selected for use in the experiments and evaluated by comparing with hornfels, which is widely used as a coarse aggregate and is a type of andesite and metamorphosed sedimentary rock. The physical properties of the aggregate were evaluated in accordance with the test methods of KS F 2527 "crushed concrete aggregate," and the compressive strength against the shale aggregate replacement ratio was measured. The compressive strength of the concrete after 28 days was 30.8 MPa when the black shale replaced 100% of the aggregate in the concrete and 31.1 MPa when the red shale replaced 100% of the aggregate in the concrete. Compared with the compressive strength of 37.5 MPa for concrete prepared by using plain aggregate, using shale as a substitute for the aggregate produced an average compressive strength that was 82% of normal concrete.

An Experimental Study on the Properties of Crushed Sand in Capital Region and Concrete according to the Replacement Ratio of Crushed Sand (수도권 부순모래의 품질특성 및 부순모래 대체율에 따른 콘크리트의 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Jeong, Yong;Park, Chang-Soo;Oh, Bok-Jin;Yeu, Byung-Chul;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.51-55
    • /
    • 2004
  • Generally, aggregate may limit the strength of concrete, and aggregate with undesirable properties including strength, shape and grading etc. cannot produce good concrete. Also, the properties of aggregate greatly affect the durability and structural performance of concrete. Recently, it has increased the using of crushed aggregate for concrete due to the exhaustion of good natural aggregate. In case of Korea, the using ratio of crushed stone occupies about 97% of whole coarse aggregate, and ratio of crushed sand occupies about 18.3% of whole fine aggregate. This is an experimental study to compare and analyze the properties of crushed sand for concrete in capital region and concrete according to the replacement ratio of crushed sand to do suitable mix design and improve the concrete quality. According to results, it was found that nearly all the properties of crushed sand satisfied with the value recommended by KS.

  • PDF

Outline and Performance Evaluation of High Quality Recycled Fine Aggregate Manufacturing System Using Drying Gravity Separation Method (건식비중분리법에 의한 고품질순환잔골재생산시스템의 개요 및 성능평가)

  • Kim Moo-Han;Kim Gyu-Yong;Choi Kyongl-Yeul;Lee Do-Heun;Song Ha-Young;Roh Kyung-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.111-114
    • /
    • 2006
  • Recently, it is increased on the concern for the reuse of waste concrete because of the shortage of natural aggregate and the increase of waste concrete. And recycled coarse aggregate is used variously, but the existing wet method producted recycled fine aggregate has problem like the high price facilities, the long time progress of the work and the poor of recycled fine aggregate. The aim of this study is to investigate outline and performance evaluation of the drying specific gravity separation method to product high duality recycled fine aggregate. Finally, this study is shown investigate process flowing of drying separation type with gravity manufacture, producte system and function of detail devices. The performance of the method of drying specific gravity separation is certificated as the qualities of recycled fine aggregate satisfied the KS

  • PDF

An Experimental Study on the Properties of Crushed Sand in Capital Region and Concrete according to the Replacement Ratio of Crushed Sand (수도권 부순모래의 품질현황 및 부순모래 대체율에 따른 콘크리트의 특성에 관한 연구)

  • Choi, Se-Jin;Lee, Seong-Yeon;Yeo, Byung-Chul;Kim, Moo-Han
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.1 s.15
    • /
    • pp.63-68
    • /
    • 2005
  • Generally, aggregate may limit the workability, strength and durability of concrete, and good concrete cannot be made with aggregate of bad property including low strength, bad shape and grading. But recently, it has been insufficient in quantity to collect good natural aggregate because of exhaustion of aggregate resources. In case of Korea, the using ratio of crushed stone occupies about 97 percent of total coarse aggregate, and ratio of crushed sand occupies about 18.3 percent of total fine aggregate. This is an experimental study to compare and analyze the properties of crushed sand for concrete in capital region and concrete according to the replacement ratio of crushed sand to improve quality and mix design of concrete using crushed sand. According to test results, it was found that nearly all the properties of crushed sand satisfied with the value recommended by KS. And it is recommended that FM of crushed sand should be lowered by improvement of manufacture system or grading adjustment should be used because FM of crushed sand was a bit higher.

Properties of Eco-friendly Artificial Stone according to the mixing ratio of Geopolymer-based recycled Aggregate (지오폴리머 기반 순환골재 혼입율에 따른 친환경성 인조석재의 특성)

  • Kyung, Seok-Hyun;Choi, Byung-Cheol;Kang, Yeon-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.126-127
    • /
    • 2020
  • Recently, as interest in environmental issues increases, minimizing carbon dioxide generated during cement manufacturing is a problem to be solved. In order to solve such a problem, it is required to use an industrial by-product of recycled aggregate, blast furnace slag, and circulating fluidized bed boiler fly ash to replace it on the basis of geopolymer(=cementless). This study examines the characteristics of eco-friendly artificial stone according to the mixing ratio of geopolymer-based recycled aggregate. As a result of the experiment, when the addition rate of the alkali stimulant was 15% and the mixing ratio of the circulating aggregate was 70%, the flexural strength and compressive strength were the highest. Density and water absorption decreased as density of circulating aggregates increased and water absorption increased. However, when the mixing ratio of the circulating aggregate exceeded 70%, the flexural strength and compressive strength decreased. Therefore, in order to obtain strengths meeting the KS standards, the mixing ratio of recycled aggregate was set to 70%, and artificial stone was manufactured using industrial by-products.

  • PDF

Development of the Testing Method for Impurity Content in Recycled Aggregate for Concrete Structure (구조체 콘크리트용 순화골재의 이물질 함유량 시험방법 개발)

  • Lee, Do-Heun;Jun, Myoung-Hoon;Jaung, Jae-Dong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.72-80
    • /
    • 2005
  • A recycled aggregate contains impurities that affect negative effects on physical properties of concrete. Therefore, a test method for examining impurities content in recycled aggregate is necessary before use of recycled aggregate. In this study, the test method by visual examination for separating impurities in recycled fine and coarse aggregates was developed. The results of the test are as follow: 1. The current KS F 2576 was necessary for comprehensive revision including types of tested recycled aggregate, definition of terminology, quantity of sample, and test method. 2. Visual examination is appropriate for larger than impurity panicle size of 1.2mm, and the larger panicle size the shorter time was required. 3. For the impurity content test by visual examination, the easiness and accuracy of the test can be obtained from the condition of sample weight of 30 grams with particle size of 2.5mm to 5mm for recycled fine aggregate and the condition of sample weight of 1 kilogram with panicle size of larger than 5mm for recycled coarse aggregate.

  • PDF

Drying Shrinkage Evaluation of Concretes with Various Volume-Surface Ratios, Aggregate Types and Concrete Pavement Mixes (시험체 형상비와 골재종류 및 배합특성에 따른 건조수축 특성평가)

  • Yang, Sung-Chul
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • This study was performed to analyze test results on drying shrinkage for concrete specimens mixed with various constituents in concrete mixes. Test variables are coarse aggregate types(Limestone, Sandstone, Granite, Andesite, Gneiss), fine aggregate types(natural sand, crushed sand) and cement amounts(normal strength, high strength). Epoxy coating of(U&V-H(A,B)) was applied onto the specimen surface to simulate diverse volume surface ratios(22.2, 40, 85.7, 150, 200, 300) with different specimen sizes. The experiments had been executed during 1,014 days at a condition of $20^{\circ}C$ and relative humidity of 60% in environmental chambers. Test results showed that shrinkage strain from the specimen equivalent to real pavement decreased to 39% compared to the standard specimen recommended by KS. Test results also showed that shrinkage strain of the specimen mixed with Limestone was 56~76% of that with Sandstone, thus Limestone mix seems to be suitable to the concrete pavement.