• Title/Summary/Keyword: KRISS

검색결과 588건 처리시간 0.026초

나노인덴테이션을 이용한 나노물성 측정 (The measurement of nano properties using nanoindentation)

  • 권동일;이경우;김성훈;김주영;이윤희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.63-68
    • /
    • 2005
  • The nanoindentation technique is widely used to investigate the mechanical properties of nano-microscale materials. The nanoindentation method for assessing mechanical properties at low loads and shallow depths is already well established fur the characterization of thin films as well as bulk materials. In this study, we evaluated residual stress in DLC and Au thin films usign nanoindentation technique with a new stress-relaxation model. Moreover, We suggest a composite hardness equation and quantify the magnitude of hardness increase by using an equation based on the interface hardness and the interface thickness, derived by comparing results derived from this equation and those determined in nanoindentation tests. Finally, We present an indentation size effect (ISE) model that extends the available contact depth for ISE application down to several tens of nanometers by considering the tip bluntness effect.

  • PDF

Development of Processing System of the Direct-broadcast Data from the Atmospheric Infrared Sounder (AIRS) on Aqua Satellite

  • Lee Jeongsoon;Kim Moongyu;Lee Chol;Yang Minsil;Park Jeonghyun;Park Jongseo
    • 대한원격탐사학회지
    • /
    • 제21권5호
    • /
    • pp.371-382
    • /
    • 2005
  • We present a processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy of radiosonde (1 K in 1-km layer for temperature and $10\%$ in 2-km layer for humidity). The core of the processor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction for generation of Level 1 brightness temperature and Level 2 geophysical parameters retrieval. The processor can produce automatically from received raw data to Level 2 geophysical parameters. As we process the direct-broadcast data almost for the first time among the AIRS direct-broadcast community, a special attention is paid to understand and verify the Level 2 products. This processor includes sub-systems, that is, the near real time validation system which made the comparison results with in-situ measurement data, and standard digital information system which carry out the data format conversion into GRIdded Binary II (GRIB II) standard format to promote active data communication between meteorological societies. This processing system is planned to encourage the application of geophysical parameters observed by AIRS to research the aqua cycle in the Korean peninsula.

Proposing a Simple Radiation Scale for the Public: Radiation Index

  • Cho, Gyuseong;Kim, Jong Hyun;Park, Tae Soon;Cho, Kunwoo
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.598-608
    • /
    • 2017
  • A new radiation scale is proposed. With empathy toward the vast majority of people who are not well versed in radiation and related matters, and thus suffering from misunderstanding that breeds unnecessary fear of radiation, the aim of proposing a new radiation scale, radiation index (RAIN), is to put the general public at ease with the concept of radiation. RAIN is defined in dimensionless numbers that relate any specific radiation dose to a properly defined reference level. As RAIN is expressed in plain numbers without an attached scientific unit, the public will feel comfortable with its friendly look, which in turn should help them understand radiation dose levels easily and allay their anxieties about radiation. The expanded awareness and proper understanding of radiation will empower the public to feel that they are not hopeless victims of radiation. The correspondence between RAIN and the specific accumulated dose is established. The equivalence will allow RAIN to serve as a common language of communication for the general public with which they can converse with radiation experts to discuss matters related to radiation safety, radiation diagnosis and therapy, nuclear accidents, and other related matters. Such fruitful dialogues will ultimately enhance public acceptance of radiation and associated technologies.

국가표준향상과 핵심국제비교를 위한 물의 삼중점 온도 측정 (Measurement of triple point of water temperature for improvement of the national standards and key comparison)

  • 양인석;이영희
    • 센서학회지
    • /
    • 제30권5호
    • /
    • pp.349-356
    • /
    • 2021
  • The Korea Research Institute of Standards and Science (KRISS), a National Metrology Institute of Korea, participated in the second-round of the international key comparison CCT-K7.2021 of triple point of water (TPW) cells. For the key comparison, three TPW cells, one of which had been used in the old CCT-K7 comparison, were assigned as the national standard of the TPW. The temperature difference (ΔT) between the average of the new and old national standards and ΔT between the new national standard and the transfer standard were measured. The comparison between the new and old national standards indicated a temperature increase of 69.5 µK after both the standards were corrected for the isotopic composition. The uncertainty of the national standard of the TPW temperature was 28 µK, and the uncertainty of ΔT was 14 µK. Three aspects of improvements in the new comparison compared to the old one were noted: (1) inclusion of two quartz cells in the national standard strengthens its long-term stability; (2) the standard deviation associated with the measurement of ΔT was reduced from 21 µK to 9.6 µK; (3) and the measured immersion profile of the TPW cells was much closer to the theoretically predicted dependence.

다중 패턴의 회절광학소자 제작을 위한 레이저 직접 노광시스템의 공정 연구 (Process Study of Direct Laser Lithographic System for Fabricating Diffractive Optical Elements with Various Patterns)

  • 김영광;이혁교;김영식;이윤우
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.58-62
    • /
    • 2019
  • Diffractive Optical Elements(DOEs) diffracts incident light using the diffraction phenomenon of light to generate a desired diffraction image. In recent years, the use of diffraction optics, which can replace existing refractive optical elements with flat plates, has been increased by implementing various optical functions that could not be implemented in refractive optical devices and by becoming miniaturized and compacted optical elements. Direct laser lithography is typically used to effectively fabrication such a diffractive optical element in a large area with a low process cost. In this study, the process conditions for fabricating patterns of diffractive optical elements in various shapes were found using direct laser lithographic system, and optical performance evaluation was performed through fabrication.

직물을 구성하는 실의 시각적 혼색 효과 (Visual Color Mixing Effect of Yarns in Textile Fabrics)

  • 채영주
    • 한국의류학회지
    • /
    • 제43권3호
    • /
    • pp.373-383
    • /
    • 2019
  • This research investigated the effect of individual yarn colors on the perception of overall colors of yarn-dyed woven fabrics. The way the colors of yarn-dyed woven fabrics are perceived is known as visual color mixing: when the different colored yarns juxtaposed on the fabric surface are observed from some distance away, they are visually mixed in our eyes and perceived as a solid color. However, we can still see individual yarn colors that make the fabrics look obviously different from actual solid colors. To quantify this visual color mixing effect, twenty-one sateen fabrics were produced in a wide range of colors using cyan, magenta, and yellow yarns, and the colors were measured instrumentally. The obtained colorimetric values were converted into solid color images on a CRT monitor. Then, the physical fabrics were scanned, and the scanned images were displayed on the monitor with solid color images in pairs for visual color difference evaluation. The woven and solid colors in each pair were of physically identical color; however, the visual color difference was as large as $4.81{\Delta}{E^*}_{ab}$ on average. A visual color difference model was proposed by considering this parametric effect of individual yarn colors.

Point-level deep learning approach for 3D acoustic source localization

  • Lee, Soo Young;Chang, Jiho;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • 제29권6호
    • /
    • pp.777-783
    • /
    • 2022
  • Even though several deep learning-based methods have been applied in the field of acoustic source localization, the previous works have only been conducted using the two-dimensional representation of the beamforming maps, particularly with the planar array system. While the acoustic sources are more required to be localized in a spherical microphone array system considering that we live and hear in the 3D world, the conventional 2D equirectangular map of the spherical beamforming map is highly vulnerable to the distortion that occurs when the 3D map is projected to the 2D space. In this study, a 3D deep learning approach is proposed to fulfill accurate source localization via distortion-free 3D representation. A target function is first proposed to obtain 3D source distribution maps that can represent multiple sources' positional and strength information. While the proposed target map expands the source localization task into a point-wise prediction task, a PointNet-based deep neural network is developed to precisely estimate the multiple sources' positions and strength information. While the proposed model's localization performance is evaluated, it is shown that the proposed method can achieve improved localization results from both quantitative and qualitative perspectives.

수소충전유량 현장교정시스템의 개발 (Development of Hydrogen Flow Field Standard in Hydrogen Refueling Station)

  • 강웅;신진우;이생희;윤병로;백운봉
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.684-691
    • /
    • 2022
  • Hydrogen fuel cell electric vehicles are typically refueled at a wide range of temperatures (-40℃ to 85℃) in the hydrogen refueling station in accordance with the worldwide accepted standard. Currently, there is no traceable method by which to verify and calibrate the hydrogen flowmeters to be used at hydrogen refueling stations except for a water calibration process as a conventional method. KRISS hydrogen field test standard based on the gravimetric principle was developed to verify the measurement accuracy of the mass flowmeter to be used at hydrogen refueling stations for the first time in Korea.

Development of a device to improve the precision of water surface identification for MeV electron beam dosimetry

  • F. Okky Agassy;Jong In Park;In Jung Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1431-1440
    • /
    • 2024
  • The study aimed to develop a laser-based distance meter (LDM) to improve water surface identification for clinical MeV electron beam dosimetry, as inaccurate water surface determination can lead to imprecise positioning of ionization chambers (ICs). The LDM consisted of a laser ranging sensor, a signal processing microcontroller, and a tablet PC for data acquisition. I50 (the water depth at which ionization current drops to 50 % of its maximum) measurements of electron beams were performed using six different types of ICs and compared to other water surface identification methods. The LDM demonstrated reproducible I50 measurements with a level of 0.01 cm for all six ICs. The uncertainty of water depth was evaluated at 0.008 cm with the LDM. The LDM also exposed discrepancies between I50 measurements using different ICs, which was partially reduced by applying an optimum shift of IC's point of measurement (POM) or effective point of measurement (EPOM). However, residual discrepancies due to the energy dependency of the cylindrical chamber's EPOM caused remained. The LDM offers straightforward and efficient means for precision water surface identification, minimizing reliance on individual operator skills.

증기발생기 전열관의 비파괴 탐상용 차등형 와전류 탐촉자 개발 (Development of Differential Type Eddy Current Probe for NDT Evaluation of the Steam Generator Tube)

  • 정선영;손대락;유권상;박덕근
    • 한국자기학회지
    • /
    • 제15권5호
    • /
    • pp.292-297
    • /
    • 2005
  • 원자력 발전소 증기발생기의 전열관은 전열면으로서의 역할과 방사능 차단벽의 역할로서 중요하며, 증기발생기 튜브의 폭발은 원자력 발전소 사고에 관계된다. 증기발생기 전열관 재료로는 Incone1600이 사용되고 있으며, 이 재료가 금속이면서 비자성이기 때문에 와전류 탐상법으로 전열관의 결함을 탐지하고 있다. 본 연구에서는 탐상 감도를 향상시키기 위하여 차등형 와전류 탐촉자를 개발하였으며, 개발된 차등형 와전류 탐촉자의 성능검사를 위해 Inconel600과 자기적 성질이 비슷하고 구하기 쉬운 SUS304로 가로 100mm, 세로 100mm, 그리고 두께 10mm인 평판에 선형결함과 원형결함을 가공하여 기준시편으로 제작하였다. 제작된 차등형 와전류 탐촉자를 사용하여, 자화주파수 50kHz, lift-off 0.4mm에서 직경이 0.25mm이고, 깊이가 0.2mm 크기의 결함까지 측정이 가능하였다.