• 제목/요약/키워드: KR-BERT

검색결과 6건 처리시간 0.016초

A Multi-task Self-attention Model Using Pre-trained Language Models on Universal Dependency Annotations

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.39-46
    • /
    • 2022
  • 본 논문에서는 UD Korean Kaist v2.3 코퍼스를 이용하여 범용 품사 태깅, 표제어추출 그리고 의존 구문분석을 동시에 예측할 수 있는 보편적 다중 작업 모델을 제안하였다. 제안 모델은 사전학습 언어모델인 다국어 BERT (Multilingual BERT)와 한국어 BERT (KR-BERT와 KoBERT)을 대상으로 추가학습 (fine-tuning)을 수행하여 BERT 모델의 자가-집중 (self-attention) 기법과 그래프 기반 Biaffine attention 기법을 적용하여 제안 모델의 성능을 비교 분석하였다.

KoBERT와 KR-BERT의 은닉층별 통사 및 의미 처리 성능 평가 (How are they layerwisely 'surprised', KoBERT and KR-BERT?)

  • 최선주;박명관;김유희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.340-345
    • /
    • 2021
  • 최근 많은 연구들이 BERT를 활용하여, 주어진 문맥에서 언어학/문법적으로 적절하지 않은 단어를 인지하고 찾아내는 성과를 보고하였다. 하지만 일반적으로 딥러닝 관점에서 NLL기법(Negative log-likelihood)은 주어진 문맥에서 언어 변칙에 대한 정확한 성격을 규명하기에는 어려움이 있다고 지적되고 있다. 이러한 한계를 해결하기 위하여, Li et al.(2021)은 트랜스포머 언어모델의 은닉층별 밀도 추정(density estimation)을 통한 가우시안 확률 분포를 활용하는 가우시안 혼합 모델(Gaussian Mixture Model)을 적용하였다. 그들은 트랜스포머 언어모델이 언어 변칙 예문들의 종류에 따라 상이한 메커니즘을 사용하여 처리한다는 점을 보고하였다. 이 선행 연구를 받아들여 본 연구에서는 한국어 기반 언어모델인 KoBERT나 KR-BERT도 과연 한국어의 상이한 유형의 언어 변칙 예문들을 다른 방식으로 처리할 수 있는지를 규명하고자 한다. 이를 위해, 본 연구에서는 한국어 형태통사적 그리고 의미적 변칙 예문들을 구성하였고, 이 예문들을 바탕으로 한국어 기반 모델들의 성능을 놀라움-갭(surprisal gap) 점수를 계산하여 평가하였다. 본 논문에서는 한국어 기반 모델들도 의미적 변칙 예문을 처리할 때보다 형태통사적 변칙 예문을 처리할 때 상대적으로 보다 더 높은 놀라움-갭 점수를 보여주고 있음을 발견하였다. 즉, 상이한 종류의 언어 변칙 예문들을 처리하기 위하여 다른 메커니즘을 활용하고 있음을 보였다.

  • PDF

한국어 학습 모델별 한국어 쓰기 답안지 점수 구간 예측 성능 비교 (Comparison of Korean Classification Models' Korean Essay Score Range Prediction Performance)

  • 조희련;임현열;이유미;차준우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.133-140
    • /
    • 2022
  • 우리는 유학생이 작성한 한국어 쓰기 답안지의 점수 구간을 예측하는 문제에서 세 개의 딥러닝 기반 한국어 언어모델의 예측 성능을 조사한다. 이를 위해 총 304편의 답안지로 구성된 실험 데이터 세트를 구축하였는데, 답안지의 주제는 직업 선택의 기준('직업'), 행복한 삶의 조건('행복'), 돈과 행복('경제'), 성공의 정의('성공')로 다양하다. 이들 답안지는 네 개의 점수 구간으로 구분되어 평어 레이블(A, B, C, D)이 매겨졌고, 총 11건의 점수 구간 예측 실험이 시행되었다. 구체적으로는 5개의 '직업' 답안지 점수 구간(평어) 예측 실험, 5개의 '행복' 답안지 점수 구간 예측 실험, 1개의 혼합 답안지 점수 구간 예측 실험이 시행되었다. 이들 실험에서 세 개의 딥러닝 기반 한국어 언어모델(KoBERT, KcBERT, KR-BERT)이 다양한 훈련 데이터로 미세조정되었다. 또 두 개의 전통적인 확률적 기계학습 분류기(나이브 베이즈와 로지스틱 회귀)도 그 성능이 분석되었다. 실험 결과 딥러닝 기반 한국어 언어모델이 전통적인 기계학습 분류기보다 우수한 성능을 보였으며, 특히 KR-BERT는 전반적인 평균 예측 정확도가 55.83%로 가장 우수한 성능을 보였다. 그 다음은 KcBERT(55.77%)였고 KoBERT(54.91%)가 뒤를 이었다. 나이브 베이즈와 로지스틱 회귀 분류기의 성능은 각각 52.52%와 50.28%였다. 학습된 분류기 모두 훈련 데이터의 부족과 데이터 분포의 불균형 때문에 예측 성능이 별로 높지 않았고, 분류기의 어휘가 글쓰기 답안지의 오류를 제대로 포착하지 못하는 한계가 있었다. 이 두 가지 한계를 극복하면 분류기의 성능이 향상될 것으로 보인다.

A BERGPT-chatbot for mitigating negative emotions

  • Song, Yun-Gyeong;Jung, Kyung-Min;Lee, Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권12호
    • /
    • pp.53-59
    • /
    • 2021
  • 본 연구에서는 '레플리카'와 같은 텍스트 입력 기반의 부정적 감정 완화가 가능한 국내 인공지능 챗봇인 BERGPT-chatbot을 제안하고자 한다. BERGPT-chatbot은 KR-BERT와 KoGPT2-chatbot을 파이프라인으로 만들어 감정 완화 챗봇을 모델링하였다. KR-BERT를 통해 정제되지 않은 일상 데이터셋에 감정을 부여하고, 추가 데이터셋을 KoGPT2-chatbot을 통해 학습하는 방식이다. BERGPT-chatbot의 개발 배경은 다음과 같다. 현재 전 세계적으로 우울증 환자가 증가하고 있으며, 이는 COVID-19로 인해 장기적 실내 생활이나 대인 관계 제한으로 더욱 심각한 문제로 대두되었다. 그로 인해 부정적 감정 완화나 정신 건강 케어에 목적을 둔 국외의 인공지능 챗봇이 팬데믹 사태로 사용량이 증가하였다. 국내에서도 국외의 챗봇과 비슷한 심리 진단 챗봇이 서비스 되고 있으나, 국내의 챗봇은 텍스트 입력 기반 답변이 아닌 버튼형 답변 중심으로 국외 챗봇과 비교하였을 때 심리 진단 수준에 그쳐 아쉬운 실정이다. 따라서, BERGPT-chatbot을 통해 감정 완화에 도움을 주는 챗봇을 제안하였으며, BERGPT-chatbot과 KoGPT2-chatbot을 언어 모델의 내부 평가 지표인 '퍼플렉서티'를 통해 비교 분석하여 BERGPT-chatbot의 우수함을 보여주고자 한다.

한국어 문장 표현을 위한 비지도 대조 학습 방법론의 비교 및 분석 (Comparison and Analysis of Unsupervised Contrastive Learning Approaches for Korean Sentence Representations)

  • 유영현;이규민;전민진;차지이;김강산;김태욱
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.360-365
    • /
    • 2022
  • 문장 표현(sentence representation)은 자연어처리 분야 내의 다양한 문제 해결 및 응용 개발에 있어 유용하게 활용될 수 있는 주요한 도구 중 하나이다. 하지만 최근 널리 도입되고 있는 사전 학습 언어 모델(pre-trained language model)로부터 도출한 문장 표현은 이방성(anisotropy)이 뚜렷한 등 그 고유의 특성으로 인해 문장 유사도(Semantic Textual Similarity; STS) 측정과 같은 태스크에서 기대 이하의 성능을 보이는 것으로 알려져 있다. 이러한 문제를 해결하기 위해 대조 학습(contrastive learning)을 사전 학습 언어 모델에 적용하는 연구가 문헌에서 활발히 진행되어 왔으며, 그중에서도 레이블이 없는 데이터를 활용하는 비지도 대조 학습 방법이 주목을 받고 있다. 하지만 대다수의 기존 연구들은 주로 영어 문장 표현 개선에 집중하였으며, 이에 대응되는 한국어 문장 표현에 관한 연구는 상대적으로 부족한 실정이다. 이에 본 논문에서는 대표적인 비지도 대조 학습 방법(ConSERT, SimCSE)을 다양한 한국어 사전 학습 언어 모델(KoBERT, KR-BERT, KLUE-BERT)에 적용하여 문장 유사도 태스크(KorSTS, KLUE-STS)에 대해 평가하였다. 그 결과, 한국어의 경우에도 일반적으로 영어의 경우와 유사한 경향성을 보이는 것을 확인하였으며, 이에 더하여 다음과 같은 새로운 사실을 관측하였다. 첫째, 사용한 비지도 대조 학습 방법 모두에서 KLUE-BERT가 KoBERT, KR-BERT보다 더 안정적이고 나은 성능을 보였다. 둘째, ConSERT에서 소개하는 여러 데이터 증강 방법 중 token shuffling 방법이 전반적으로 높은 성능을 보였다. 셋째, 두 가지 비지도 대조 학습 방법 모두 검증 데이터로 활용한 KLUE-STS 학습 데이터에 대해 성능이 과적합되는 현상을 발견하였다. 결론적으로, 본 연구에서는 한국어 문장 표현 또한 영어의 경우와 마찬가지로 비지도 대조 학습의 적용을 통해 그 성능을 개선할 수 있음을 검증하였으며, 이와 같은 결과가 향후 한국어 문장 표현 연구 발전에 초석이 되기를 기대한다.

  • PDF

KRBERT 임베딩 층에 따른 의미역 결정 (Layerwise Semantic Role Labeling in KRBERT)

  • 서혜진;박명관;김유희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.617-621
    • /
    • 2021
  • 의미역 결정은 문장 속에서 서술어와 그 논항의 관계를 파악하며, '누가, 무엇을, 어떻게, 왜' 등과 같은 의미역 관계를 찾아내는 자연어 처리 기법이다. 최근 수행되고 있는 의미역 결정 연구는 주로 말뭉치를 활용하여 딥러닝 학습을 하는 방식으로 연구가 이루어지고 있다. 최근 구글에서 개발한 사전 훈련된 Bidirectional Encoder Representations from Transformers (BERT) 모델이 다양한 자연어 처리 분야에서 상당히 높은 성능을 보이고 있다. 본 논문에서는 한국어 의미역 결정 성능 향상을 위해 한국어의 언어적 특징을 고려하며 사전 학습된 SNU KR-BERT를 사용하면서 한국어 의미역 결정 모델의 성능을 살펴보였다. 또한, 본 논문에서는 BERT 모델에서 과연 어떤 히든 레이어(hidden layer)에서 한국어 의미역 결정을 더 잘 수행하는지 알아보고자 하였다. 실험 결과 마지막 히든 레이어 임베딩을 활용하였을 때, 언어 모델의 성능은 66.4% 였다. 히든 레이어 별 언어 모델 성능을 비교한 결과, 마지막 4개의 히든 레이어를 이었을 때(concatenated), 언어 모델의 성능은 67.9% 이였으며, 11번째 히든 레이어를 사용했을 때는 68.1% 이였다. 즉, 마지막 히든 레이어를 선택했을 때보다 더 성능이 좋았다는 것을 알 수 있었다. 하지만 각 언어 모델 별 히트맵을 그려보았을 때는 마지막 히든 레이어 임베딩을 활용한 언어 모델이 더 정확히 의미역 판단을 한다는 것을 알 수 있었다.

  • PDF