• Title/Summary/Keyword: KR-BERT

Search Result 6, Processing Time 0.021 seconds

A Multi-task Self-attention Model Using Pre-trained Language Models on Universal Dependency Annotations

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.39-46
    • /
    • 2022
  • In this paper, we propose a multi-task model that can simultaneously predict general-purpose tasks such as part-of-speech tagging, lemmatization, and dependency parsing using the UD Korean Kaist v2.3 corpus. The proposed model thus applies the self-attention technique of the BERT model and the graph-based Biaffine attention technique by fine-tuning the multilingual BERT and the two Korean-specific BERTs such as KR-BERT and KoBERT. The performances of the proposed model are compared and analyzed using the multilingual version of BERT and the two Korean-specific BERT language models.

How are they layerwisely 'surprised', KoBERT and KR-BERT? (KoBERT와 KR-BERT의 은닉층별 통사 및 의미 처리 성능 평가)

  • Choi, Sunjoo;Park, Myung-Kwan;Kim, Euhee
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.340-345
    • /
    • 2021
  • 최근 많은 연구들이 BERT를 활용하여, 주어진 문맥에서 언어학/문법적으로 적절하지 않은 단어를 인지하고 찾아내는 성과를 보고하였다. 하지만 일반적으로 딥러닝 관점에서 NLL기법(Negative log-likelihood)은 주어진 문맥에서 언어 변칙에 대한 정확한 성격을 규명하기에는 어려움이 있다고 지적되고 있다. 이러한 한계를 해결하기 위하여, Li et al.(2021)은 트랜스포머 언어모델의 은닉층별 밀도 추정(density estimation)을 통한 가우시안 확률 분포를 활용하는 가우시안 혼합 모델(Gaussian Mixture Model)을 적용하였다. 그들은 트랜스포머 언어모델이 언어 변칙 예문들의 종류에 따라 상이한 메커니즘을 사용하여 처리한다는 점을 보고하였다. 이 선행 연구를 받아들여 본 연구에서는 한국어 기반 언어모델인 KoBERT나 KR-BERT도 과연 한국어의 상이한 유형의 언어 변칙 예문들을 다른 방식으로 처리할 수 있는지를 규명하고자 한다. 이를 위해, 본 연구에서는 한국어 형태통사적 그리고 의미적 변칙 예문들을 구성하였고, 이 예문들을 바탕으로 한국어 기반 모델들의 성능을 놀라움-갭(surprisal gap) 점수를 계산하여 평가하였다. 본 논문에서는 한국어 기반 모델들도 의미적 변칙 예문을 처리할 때보다 형태통사적 변칙 예문을 처리할 때 상대적으로 보다 더 높은 놀라움-갭 점수를 보여주고 있음을 발견하였다. 즉, 상이한 종류의 언어 변칙 예문들을 처리하기 위하여 다른 메커니즘을 활용하고 있음을 보였다.

  • PDF

Comparison of Korean Classification Models' Korean Essay Score Range Prediction Performance (한국어 학습 모델별 한국어 쓰기 답안지 점수 구간 예측 성능 비교)

  • Cho, Heeryon;Im, Hyeonyeol;Yi, Yumi;Cha, Junwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.133-140
    • /
    • 2022
  • We investigate the performance of deep learning-based Korean language models on a task of predicting the score range of Korean essays written by foreign students. We construct a data set containing a total of 304 essays, which include essays discussing the criteria for choosing a job ('job'), conditions of a happy life ('happ'), relationship between money and happiness ('econ'), and definition of success ('succ'). These essays were labeled according to four letter grades (A, B, C, and D), and a total of eleven essay score range prediction experiments were conducted (i.e., five for predicting the score range of 'job' essays, five for predicting the score range of 'happiness' essays, and one for predicting the score range of mixed topic essays). Three deep learning-based Korean language models, KoBERT, KcBERT, and KR-BERT, were fine-tuned using various training data. Moreover, two traditional probabilistic machine learning classifiers, naive Bayes and logistic regression, were also evaluated. Experiment results show that deep learning-based Korean language models performed better than the two traditional classifiers, with KR-BERT performing the best with 55.83% overall average prediction accuracy. A close second was KcBERT (55.77%) followed by KoBERT (54.91%). The performances of naive Bayes and logistic regression classifiers were 52.52% and 50.28% respectively. Due to the scarcity of training data and the imbalance in class distribution, the overall prediction performance was not high for all classifiers. Moreover, the classifiers' vocabulary did not explicitly capture the error features that were helpful in correctly grading the Korean essay. By overcoming these two limitations, we expect the score range prediction performance to improve.

A BERGPT-chatbot for mitigating negative emotions

  • Song, Yun-Gyeong;Jung, Kyung-Min;Lee, Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.53-59
    • /
    • 2021
  • In this paper, we propose a BERGPT-chatbot, a domestic AI chatbot that can alleviate negative emotions based on text input such as 'Replika'. We made BERGPT-chatbot into a chatbot capable of mitigating negative emotions by pipelined two models, KR-BERT and KoGPT2-chatbot. We applied a creative method of giving emotions to unrefined everyday datasets through KR-BERT, and learning additional datasets through KoGPT2-chatbot. The development background of BERGPT-chatbot is as follows. Currently, the number of people with depression is increasing all over the world. This phenomenon is emerging as a more serious problem due to COVID-19, which causes people to increase long-term indoor living or limit interpersonal relationships. Overseas artificial intelligence chatbots aimed at relieving negative emotions or taking care of mental health care, have increased in use due to the pandemic. In Korea, Psychological diagnosis chatbots similar to those of overseas cases are being operated. However, as the domestic chatbot is a system that outputs a button-based answer rather than a text input-based answer, when compared to overseas chatbots, domestic chatbots remain at a low level of diagnosing human psychology. Therefore, we proposed a chatbot that helps mitigating negative emotions through BERGPT-chatbot. Finally, we compared BERGPT-chatbot and KoGPT2-chatbot through 'Perplexity', an internal evaluation metric for evaluating language models, and showed the superity of BERGPT-chatbot.

Comparison and Analysis of Unsupervised Contrastive Learning Approaches for Korean Sentence Representations (한국어 문장 표현을 위한 비지도 대조 학습 방법론의 비교 및 분석)

  • Young Hyun Yoo;Kyumin Lee;Minjin Jeon;Jii Cha;Kangsan Kim;Taeuk Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.360-365
    • /
    • 2022
  • 문장 표현(sentence representation)은 자연어처리 분야 내의 다양한 문제 해결 및 응용 개발에 있어 유용하게 활용될 수 있는 주요한 도구 중 하나이다. 하지만 최근 널리 도입되고 있는 사전 학습 언어 모델(pre-trained language model)로부터 도출한 문장 표현은 이방성(anisotropy)이 뚜렷한 등 그 고유의 특성으로 인해 문장 유사도(Semantic Textual Similarity; STS) 측정과 같은 태스크에서 기대 이하의 성능을 보이는 것으로 알려져 있다. 이러한 문제를 해결하기 위해 대조 학습(contrastive learning)을 사전 학습 언어 모델에 적용하는 연구가 문헌에서 활발히 진행되어 왔으며, 그중에서도 레이블이 없는 데이터를 활용하는 비지도 대조 학습 방법이 주목을 받고 있다. 하지만 대다수의 기존 연구들은 주로 영어 문장 표현 개선에 집중하였으며, 이에 대응되는 한국어 문장 표현에 관한 연구는 상대적으로 부족한 실정이다. 이에 본 논문에서는 대표적인 비지도 대조 학습 방법(ConSERT, SimCSE)을 다양한 한국어 사전 학습 언어 모델(KoBERT, KR-BERT, KLUE-BERT)에 적용하여 문장 유사도 태스크(KorSTS, KLUE-STS)에 대해 평가하였다. 그 결과, 한국어의 경우에도 일반적으로 영어의 경우와 유사한 경향성을 보이는 것을 확인하였으며, 이에 더하여 다음과 같은 새로운 사실을 관측하였다. 첫째, 사용한 비지도 대조 학습 방법 모두에서 KLUE-BERT가 KoBERT, KR-BERT보다 더 안정적이고 나은 성능을 보였다. 둘째, ConSERT에서 소개하는 여러 데이터 증강 방법 중 token shuffling 방법이 전반적으로 높은 성능을 보였다. 셋째, 두 가지 비지도 대조 학습 방법 모두 검증 데이터로 활용한 KLUE-STS 학습 데이터에 대해 성능이 과적합되는 현상을 발견하였다. 결론적으로, 본 연구에서는 한국어 문장 표현 또한 영어의 경우와 마찬가지로 비지도 대조 학습의 적용을 통해 그 성능을 개선할 수 있음을 검증하였으며, 이와 같은 결과가 향후 한국어 문장 표현 연구 발전에 초석이 되기를 기대한다.

  • PDF

Layerwise Semantic Role Labeling in KRBERT (KRBERT 임베딩 층에 따른 의미역 결정)

  • Seo, Hye-Jin;Park, Myung-Kwan;Kim, Euhee
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.617-621
    • /
    • 2021
  • 의미역 결정은 문장 속에서 서술어와 그 논항의 관계를 파악하며, '누가, 무엇을, 어떻게, 왜' 등과 같은 의미역 관계를 찾아내는 자연어 처리 기법이다. 최근 수행되고 있는 의미역 결정 연구는 주로 말뭉치를 활용하여 딥러닝 학습을 하는 방식으로 연구가 이루어지고 있다. 최근 구글에서 개발한 사전 훈련된 Bidirectional Encoder Representations from Transformers (BERT) 모델이 다양한 자연어 처리 분야에서 상당히 높은 성능을 보이고 있다. 본 논문에서는 한국어 의미역 결정 성능 향상을 위해 한국어의 언어적 특징을 고려하며 사전 학습된 SNU KR-BERT를 사용하면서 한국어 의미역 결정 모델의 성능을 살펴보였다. 또한, 본 논문에서는 BERT 모델에서 과연 어떤 히든 레이어(hidden layer)에서 한국어 의미역 결정을 더 잘 수행하는지 알아보고자 하였다. 실험 결과 마지막 히든 레이어 임베딩을 활용하였을 때, 언어 모델의 성능은 66.4% 였다. 히든 레이어 별 언어 모델 성능을 비교한 결과, 마지막 4개의 히든 레이어를 이었을 때(concatenated), 언어 모델의 성능은 67.9% 이였으며, 11번째 히든 레이어를 사용했을 때는 68.1% 이였다. 즉, 마지막 히든 레이어를 선택했을 때보다 더 성능이 좋았다는 것을 알 수 있었다. 하지만 각 언어 모델 별 히트맵을 그려보았을 때는 마지막 히든 레이어 임베딩을 활용한 언어 모델이 더 정확히 의미역 판단을 한다는 것을 알 수 있었다.

  • PDF