• Title/Summary/Keyword: KPFM

Search Result 15, Processing Time 0.018 seconds

Optimization of CdS buffer layers for $Cu_2ZnSnSe_4$ thin-film applications ($Cu_2ZnSnSe_4$ 태양전지의 적용을 위한 최적화 된 CdS 버퍼층 연구)

  • Kim, Gee-Yeong;Jeong, Ah-Reum;Jo, William
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.400-403
    • /
    • 2012
  • $Cu_2ZnSnSe_4$(CZTSe) is emerged as a promising material for thin-film solar cells because of non-toxic, inexpensive and earth abundant more than $Cu(In,Ga)Se_2$ materials. For fabricating compound semiconductor thin-film solar cells, CdS is widely used for a buffer layer which fabricated by a chemical bath deposition method (CBD). Through the experiment, we controlled deposition temperature and mol ratio of solution conditions to find the proper grain 크기 and exact composition. The optimum CdS layers were characterized in terms of surface morphology by using a scanning electron microscope (SEM) and atomic force microscope (AFM). The optimized CdS layer process was applied on CZTSe thin-films. The thickness of buffer layer related with device performance of solar cells which controlled by deposition time. Local surface potential of CdS/CZTSe thin-films was investigated by Kelvin probe force microscopy (KPFM). From these results, we can deduce local electric properties with different thickness of buffer layer on CZTSe thin-films. Therefore, we investigated the effect of CdS buffer layer thickness on the CZTSe thin-films for decreasing device losses. From this study, we can suggest buffer layer thickness which contributes to efficiencies and device performance of CZTSe thin-film solar cells.

  • PDF

UV Photo Response Driven by Pd Nano Particles on LaAlO3/SrTiO3 Using Ambient Control Kelvin Probe Force Microscopy

  • Kim, Haeri;Chan, Ngai Yui;Dai, Jiyan;Kim, Dong-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.207.1-207.1
    • /
    • 2014
  • High-mobility and two dimensional conduction at the interface between two band insulators, LaAlO3 (LAO) and SrTiO3 (STO), have attracted considerable research interest for both applications and fundamental understanding. Several groups have reported the photoconductivity of LAO/STO, which give us lots of potential development of optoelectronic applications using the oxide interface. Recently, a giant photo response of Pd nano particles/LAO/STO is observed in UV illumination compared with LAO/STO sample. These phenomena have been suggested that the correlation between the interface and the surface states significantly affect local charge modification and resulting electrical transport. Water and gas adsorption/desorption can alter the band alignment and surface workfunction. Therefore, characterizing and manipulating the electric charges in these materials (electrons and ions) are crucial for investigating the physics of metal oxide. Proposed mechanism do not well explain the experimental data in various ambient and there has been no quantitative work to confirm these mechanism. Here, we have investigated UV photo response in various ambient by performing transport and Kelvin probe force microscopy measurements simultaneously. We found that Pd nano particles on LAO can form Schottky contact, it cause interface carrier density and characteristics of persistence photo conductance depending on gas environment. Our studies will help to improve our understanding on the intriguing physical properties providing an important role in many enhanced light sensing and gas sensing applications as a catalytic material in different kinds of metal oxide systems.

  • PDF

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF

Metal-Semiconductor Contact Behavior of Solution-Processed ZnSnO Thin Film Transistors (용액법으로 제작된 ZnSnO 박막트랜지스터의 전극 물질에 따른 계면 접촉특성 연구)

  • Jeong, Young-Min;Song, Keun-Kyu;Woo, Kyoo-Hee;Jun, Tae-Hwan;Jung, Yang-Ho;Moon, Joo-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.401-407
    • /
    • 2010
  • We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.

Local surface potential and current-voltage behaviors of $Cu(In,Ga)Se_2$ thin-films with different Ga/(In+Ga) content (Ga/(In+Ga) 함량비에 따른 $Cu(In,Ga)Se_2$ 박막의 국소적 영역에서의 표면 퍼텐셜과 전류-전압 특성 연구)

  • Kim, G.Y.;Jeong, A.R.;Jo, W.;Jo, H.J.;Kim, D.H.;Sung, S.J.;Hwang, D.K.;Kang, J.K.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.149-152
    • /
    • 2012
  • $Cu(In,Ga)Se_2$ (CIGS) is one of the most promising photovoltaic materials because of large conversion efficiency which has been achieved with an optimum Ga/(In+Ga) composition in $CuIn_{1-x}Ga_xSe_2$ (X~0.3). The Ga/(In+Ga) content is important to determine band gap, solar cell performances and carrier behaviors at grain boundary (GB). Effects of Ga/(In+Ga) content on physical properties of the CIGS layers have been extensively studied. In previous research, it is reported that GB is not recombination center of CIGS thin-film solar cells. However, GB recombination and electron-hole pair behavior studies are still lacking, especially influence of with different X on CIGS thin-films. We obtained the GB surface potential, local current and I-V characteristic of different X (00.7 while X~0.3 showed higher potential than 100 mV on GBs. Higher potential on GBs appears positive band bending. It can decrease recombination loss because of carrier separation. Therefore, we suggest recombination and electron-hole behaviors at GBs depending on composition of X.

  • PDF