• Title/Summary/Keyword: KOrea Multi-Purpose SATellite-3

Search Result 103, Processing Time 0.031 seconds

Arctic Sea Ice Motion Measurement Using Time-Series High-Resolution Optical Satellite Images and Feature Tracking Techniques (고해상도 시계열 광학 위성 영상과 특징점 추적 기법을 이용한 북극해 해빙 이동 탐지)

  • Hyun, Chang-Uk;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1215-1227
    • /
    • 2018
  • Sea ice motion is an important factor for assessing change of sea ice because the motion affects to not only regional distribution of sea ice but also new ice growth and thickness of ice. This study presents an application of multi-temporal high-resolution optical satellites images obtained from Korea Multi-Purpose Satellite-2 (KOMPSAT-2) and Korea Multi-Purpose Satellite-3 (KOMPSAT-3) to measure sea ice motion using SIFT (Scale-Invariant Feature Transform), SURF (Speeded Up Robust Features) and ORB (Oriented FAST and Rotated BRIEF) feature tracking techniques. In order to use satellite images from two different sensors, spatial and radiometric resolution were adjusted during pre-processing steps, and then the feature tracking techniques were applied to the pre-processed images. The matched features extracted from the SIFT showed even distribution across whole image, however the matched features extracted from the SURF showed condensed distribution of features around boundary between ice and ocean, and this regionally biased distribution became more prominent in the matched features extracted from the ORB. The processing time of the feature tracking was decreased in order of SIFT, SURF and ORB techniques. Although number of the matched features from the ORB was decreased as 59.8% compared with the result from the SIFT, the processing time was decreased as 8.7% compared with the result from the SIFT, therefore the ORB technique is more suitable for fast measurement of sea ice motion.

KOMPSAT Image Processing and Analysis (다목적실용위성 영상처리 및 분석)

  • Kwang-Jae Lee;Kwan-Young Oh;Sung-Ho Chae;Sun-Gu Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1671-1678
    • /
    • 2023
  • The Korea multi-purpose satellite (KOMPSAT) series consisting of multi-sensors has been used in various fields such as land, environmental monitoring, and disaster analysis since its first launch in 1999. Recently, as various information processing technologies (high-speed computing technology, computer vision, artificial intelligence, etc.) that are rapidly developing are utilized in the field of remote sensing, it has become possible to develop more various satellite image processing and analysis algorithms. In this special issue, we would like to introduce recently researched technologies related to the KOMPSAT image application and research topics participated in the 2023 Satellite Information Application Contest.

An Experimental Study on the Image-Based Atmospheric Correction Using Multispectral Data

  • Lee Kwang-Jae;Kim Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.196-200
    • /
    • 2004
  • The purpose of this study is to examine the image­based atmospheric correction models using the data from Landsat Enhanced Thermal Mapper Plus (ETM+) that have quite similar spectral characteristics to the forthcoming Korea Multi-Purpose SATellite (KOMPSAT)-2 Multi-Spectral Camera (MSC), and the in-situ measured surface reflectance data during satellite overflight. The main advantage of this type of correction is that it does not require in-situ measurements during each satellite overflight. While substantial differences are present between Top-Of-the Atmosphere (TOA) reflectance and in-situ measurements, the results showed that Case 1 based on COST model gives most accurate results among three cases. The accuracy of Case 2 is very close to Case 1 and its values are smaller than in-situ data. No notable features appear between some bands in the Case 3 and in-situ data. It is expected from this study that if the current methods are applied to the IKONOS high resolution data, we will be able to develop the suitable atmospheric correction methods for MSC data.

  • PDF

Surface Observation Probability System of KOMPSAT-3 (다목적실용위성 3호의 지상관측확률에 관한 연구)

  • Park, Myeong-Suk;Heo, Chang-Hoe;Kim, Yeong-Mi;Kim, Eung-Hyeon;Kim, Gyu-Seon
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.371-378
    • /
    • 2006
  • The surface observation probability system (SOPS) of the Korea Multi-Purpose Satellite (KOMPSAT) has been developed based on the climatological distribution of cloud coverage and the expected passage of satellite orbit. While the optical camera loaded on KOMPSAT series has been operated with the purpose of observing earth's surface, it cannot see the surface when an obstacle (i.e., cloud) exists between them. In the present study, cloud information of International Satellite Cloud Climatology Project incorporates into high resolution grid of the KOMPSAT-3 orbit. The characteristics of the KOMPSAT SOPS are discussed.

ELECTRICAL GROUND SUPPORT EQUIPMENT (EGSE) DESIGN FOR SMALL SATELLITE

  • Park, Jong-Oh;Choi, Jong-Yoen;Lim, Seong-Bin;Kwon, Jae-Wook;Youn, Young-Su;Chun, Yong-Sik;Lee, Sang-Seol
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.215-224
    • /
    • 2002
  • This paper describes EGSE design for the small satellite such like KOMPSAT-2 satellite. Recent design trend of small satellite and EGSE is to take short development time and less cost. For this purpose, the design for KOMPSAT-2 satellite and EGSE are not much modified from KOMPSAT-1 heritage. It means that it is able to be accommodated the verified hardware and software modules used in KOMPSAT-1 satellite program if possible. The objective of EGSE is to provide hardware and software for efficient electrical testing of integrated KOMPSAT-2 satellite in three general categories. (1) Simulators for ground testing (e.g. solar-simulation power, earth scenes, horizons and sun sensor). (2) Ground station type satellite data acquisition and processing test sets. (3) Overall control of satellite using hardline datum. In KOMPSAT (KOrea Multi-Purpose SATellite) program, KOMPSAT-2 EGSE was developed to support satellite integration and test activities. The KOMPSAT-2 EGSE was designed in parallel with satellite design. Consequently, the KOMPSAT-2 EGSE was based on the KOMPSAT-1 heritage since the spacecraft design followed the heritage. The KOMPSAT-2 baseline was elaborated by taking advantage of experience from KOMPSAT-1 program. The EGSE of KOMPSAT-2 design concept is generic modular design with preference in part selection with commercial off-the-shelf which were proven from KOMPSAT-1 programs, flexible/user friendly operational environment (graphical interface preferred), minimized new design and self test capability.

Current Trends of the Synthetic Aperture Radar (SAR) Satellite Development and Future Strategy for the High Resolution Wide Swath (HRWS) SAR Satellite Development (SAR(Synthetic Aperture Radar) 위성 개발현황 및 향후 HRWS(High Resolution Wide Swath) SAR 위성 개발전략)

  • Ko, Ungdai;Seo, Inho;Lee, Juyoung;Jeong, Hyunjae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.337-355
    • /
    • 2021
  • This paper is made to suggest a future strategy for the Korean High Resolution Wide Swath Synthetic Aperture Radar (HRWS SAR) satellite development by surveying the current trends for the SAR satellite technologies. From the survey, the latest SAR technology trends are revealed of using Digital Beam-Forming (DBF), SCan-On-Receive (SCORE), Displaced Phase Center Antenna (DPCA), interferometry, and polarimetry for exploiting the SAR imagery. Based on the latest SAR technology trends and the foreign HRWS SAR development cases, the strategy for the future HRWS Korean SAR satellite development is suggested to develop the DPCA and SCORE technologies by using the KOrea Multi-Purpose SATellite-6 (KOMPSAT-6) which is going to launch in a few years, and consequently to develop the HRWS SAR satellites which can monitor the whole Earth at weekly intervals.

Ground Receiving System for KOMPSAT-2

  • Kim, Moon-Gyu;Kim, Tae-Jung;Choi, Hae-Jin;Park, Sung-Og;Lee, Dong-Han;Im, Yong-Jo;Shin, Ji-Hyun;Choi, Myung-Jin;Park, Seung-Ran;Lee, Jong-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.191-200
    • /
    • 2003
  • Remote sensing division of satellite technology research center (SaTReC) , Korea advanced institute of science and technology (KAIST) has developed a ground receiving and processing system for high resolution satellite images. The developed system will be adapted and operated to receive, process and distributes images acquired from of the second Korean Multi-purpose Satellite (KOMPSAT-2), which will be launched in 2004. This project had initiated to develop and Koreanize the state-of-the-art technologies for the ground receiving system for high resolution remote sensing images, which range from direct ingestion of image data to the distribution of products through precise image correction. During four years development from Dec. 1998 until Aug. 2002, the system had been verified in various ways including real operation of custom-made systems such as a prototype system for SPOT and a commercialized system for KOMPSAT-1. Currently the system is under customization for installation at KOMPSAT-2 ground station. In this paper, we present accomplished work and future work.

Conceptual Design of Structure Subsystem for Geo-stationary Multi-purpose Satellite (정지궤도복합위성 구조계 개념설계)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Sung-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.110-115
    • /
    • 2012
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe launch environments. The launch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. Currently KARI(Korea Aerospace Research Institute) is developing Geo-KOMPSAT-2(Geostationary Earth Orbit KOrea Multi-Purpose Satellite) with technologies which were acquired during COMS(Communication, Ocean and Meteorological Satellite) development. As compared to COMS Geo-KOMPSAT-2 requires more propellant due to mass increase of Advanced Meteorological Payload with high resolution and increase of miss life, it is difficult to apply the design concept of COMS to Geo-KOMPSAT-2. This paper deals with conceptual design of Structural Subsystem for Geo-KOMPSAT-2.

INITIAL GEOMETRIC ACCURACY OF KOMPSAT-2 HIGH RESOLUTION IMAGE

  • Seo, Doo-Chun;Lim, Hyo-Suk;Shin, Ji-Hyeon;Kim, Moon-Gyu
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.780-783
    • /
    • 2006
  • The KOrea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and the main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image without ground control points and briefly introduces the sensor model of KOMPSAT-2. Also investigated and evaluated the obtained 3-dimensional terrain information using the MSC pass image and scene images acquired from the KOMPSAT-2 satellite.

  • PDF

A Study on the Dynamic Characteristics of S/C Shipping Container Isolation System (다목적 실용위성2호의 운송 콘테이너 개발)

  • 우성현;김홍배;문상무;김영기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.933-939
    • /
    • 2001
  • A Satellite shipping container must afford the satellite a relatively benign thermal, vibration, and particle environment that is oblivious to the extreme temperatures, sand, dust, vibrations and shocks that can accompany the transportation. In this study, we have designed a vibration isolation system of a spacecraft container that will be used to transport a satellite called KOMPSAT (KOrea Multi-Purpose SATellite) -2 from KARI (Korea Aerospace Research Institute) Taejon to its launch site. To identify the dynamic characteristics of the system, a 1/3-scaled mockup of the container was developed. A large electro-magnetic shaker (Max. 240 KN) was used to excite the mockup, and vibration signals from 20 points were collected for modal tests. Numerical simulations through CATIA 3D Modeling were performed to identify the behavior of isolation springs. The results showed that a simplified model predicts the behavior in a reasonable accuracy. Moreover, the model guides us how to design a full-scaled satellite-shipping container.

  • PDF