• Title/Summary/Keyword: KOSPI200 index

Search Result 103, Processing Time 0.029 seconds

A hidden Markov model for predicting global stock market index (은닉 마르코프 모델을 이용한 국가별 주가지수 예측)

  • Kang, Hajin;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.461-475
    • /
    • 2021
  • Hidden Markov model (HMM) is a statistical model in which the system consists of two elements, hidden states and observable results. HMM has been actively used in various fields, especially for time series data in the financial sector, since it has a variety of mathematical structures. Based on the HMM theory, this research is intended to apply the domestic KOSPI200 stock index as well as the prediction of global stock indexes such as NIKKEI225, HSI, S&P500 and FTSE100. In addition, we would like to compare and examine the differences in results between the HMM and support vector regression (SVR), which is frequently used to predict the stock price, due to recent developments in the artificial intelligence sector.

Fuzzy System and Knowledge Information for Stock-Index Prediction

  • Kim, Hae-Gyun;Bae, Hyeon;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.172.6-172
    • /
    • 2001
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock, or other economic markets. Most previous experiments used multilayer perceptrons(MLP) for stock market forecasting, The Kospi 200 Index is modeled using different neural networks and fuzzy system predictions. In this paper, a multilayer perceptron architecture, a dynamic polynomial neural network(DPNN) and a fuzzy system are used to predict the Kospi 200 index. The results of prediction is compared with the root mean squared error(RMSE) and the scatter plot. The results show that the fuzzy system is performing slightly better than DPNN and MLP. We can develop the desired fuzzy system by learning methods ...

  • PDF

An Empirical Study on the Volume and Return in the Korean Stock Index Futures Markets by Trader Types (투자주체별 주가지수선물시장의 거래량과 수익률에 관한 연구)

  • Lee, Sang-Jae
    • 한국산학경영학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.107-120
    • /
    • 2006
  • This thesis examines the relationship between the trading volume and price return in the korean stock Index Futures until June 2005. First, the volume of KOSPI200 futures doesn't play a primary role with the clear explanation of return model. Second, an unexpected volume shocks are negatively associated with the return in case of the KOSPI200 futures, but it is a meaningless relation in the KOSDAQ50 futures. In the case of open interest, it's difficult to find any mean in a both futures. Third, The changes in the trading volumes by foreign investors are positively associated with the return and the volatility, but individuals and domestic commercial investors are negatively associated with the return. This empirical result seems that foreign investors are initiatively trading the korean stock index futures, individuals and domestic commercial investors follow the lead made by foreign investors.

  • PDF

Development and Application of Risk Recovery Index using Machine Learning Algorithms (기계학습알고리즘을 이용한 위험회복지수의 개발과 활용)

  • Kim, Sun Woong
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.4
    • /
    • pp.25-39
    • /
    • 2016
  • Asset prices decline sharply and stock markets collapse when financial crisis happens. Recently we have encountered more frequent financial crises than ever. 1998 currency crisis and 2008 global financial crisis triggered academic researches on early warning systems that aim to detect the symptom of financial crisis in advance. This study proposes a risk recovery index for detection of good opportunities from financial market instability. We use SVM classifier algorithms to separate recovery period from unstable financial market data. Input variables are KOSPI index and V-KOSPI200 index. Our SVM algorithms show highly accurate forecasting results on testing data as well as training data. Risk recovery index is derived from our SVM-trained outputs. We develop a trading system that utilizes the suggested risk recovery index. The trading result records very high profit, that is, its annual return runs to 121%.

A Study on Developing a Profitable Intra-day Trading System for KOSPI 200 Index Futures Using the US Stock Market Information Spillover Effect

  • Kim, Sun-Woong;Choi, Heung-Sik;Lee, Byoung-Hwa
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.3
    • /
    • pp.151-162
    • /
    • 2010
  • Recent developments in financial market liberalization and information technology are accelerating the interdependence of national stock markets. This study explores the information spillover effect of the US stock market on the overnight and daytime returns of the Korean stock market. We develop a profitable intra-day trading strategy based on the information spillover effect. Our study provides several important conclusions. First, an information spillover effect still exists from the overnight US stock market to the current Korean stock market. Second, Korean investors overreact to both good and bad news overnight from the US. Therefore, there are significant price reversals in the KOSPI 200 index futures prices from market open to market close. Third, the overreaction effect is different between weekdays and weekends. Finally, the suggested intra-day trading system based on the documented overreaction hypothesis is profitable.

  • PDF

Life Cycle of Index Derivatives and Trading Behavior by Investor Types (주가지수 파생상품 Life Cycle과 투자자 유형별 거래행태)

  • Oh, Seung-Hyun;Hahn, Sang-Buhm
    • The Korean Journal of Financial Management
    • /
    • v.25 no.2
    • /
    • pp.165-190
    • /
    • 2008
  • The degree of informational asymmetry relating to the expiration of index derivatives is usually increased as an expiration day of index derivatives approaches. The increase in the degree of informational asymmetry may have some effects on trading behavior of investors. To examine what the effects look like, 'life cycle of index derivatives' in this study is defined as three adjacent periods around expiration day: pre-expiration period(a week before the expiration day), post-expiration period(a week after the expiration day), and remaining period. It is inspected whether stock investor's trading behavior is changed according to the life cycle of KOSPI200 derivatives and what the reason of the changing behavior is. We have four results. First, trading behavior of each investor group is categorized into three patterns: ㄱ-pattern, L-pattern and U-pattern. The level of trading activity is low for pre-expiration period and normal for other periods in the ㄱ-pattern. L-pattern means that the level of trading activity is high for post-expiration period and normal for other periods. In the U-pattern, the trading activity is reduced for remaining period compared to other periods. Second, individual investors have ㄱ-pattern of trading large stocks according to the life cycle of KOSPI200 index futures while they show U-pattern according to the life cycle of KOSPI200 index options. Their trading behavior is consistent with the prediction of Foster and Viswanathan(1990)'s model for strategic liquidity investors. Third, trading pattern of foreign investors in relation to life cycle of index derivatives is partially explained by the model, but trading pattern of institutional investors has nothing to do with the predictions of the model.

  • PDF

ETF Trading Based on Daily KOSPI Forecasting Using Neural Networks (신경회로망을 이용한 KOSPI 예측 기반의 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • The application of neural networks to stock forecasting has received a great deal of attention because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from data, which is required to describe nonlinear input-output relations of stock forecasting. The paper builds neural network models to forecast daily KOrea composite Stock Price Index (KOSPI), and their performance is demonstrated. MAPEs of NN1 model show 0.427 and 0.627 in its learning and test, respectively. Based on the predicted KOSPI price, the paper proposes an alpha trading for trades in Exchange Traded Funds (ETFs) that fluctuate with the KOSPI200. The alpha trading is tested with data from 125 trade days, and its trade return of 7.16 ~ 15.29 % suggests that the proposed alpha trading is effective.

Selection Model of System Trading Strategies using SVM (SVM을 이용한 시스템트레이딩전략의 선택모형)

  • Park, Sungcheol;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.59-71
    • /
    • 2014
  • System trading is becoming more popular among Korean traders recently. System traders use automatic order systems based on the system generated buy and sell signals. These signals are generated from the predetermined entry and exit rules that were coded by system traders. Most researches on system trading have focused on designing profitable entry and exit rules using technical indicators. However, market conditions, strategy characteristics, and money management also have influences on the profitability of the system trading. Unexpected price deviations from the predetermined trading rules can incur large losses to system traders. Therefore, most professional traders use strategy portfolios rather than only one strategy. Building a good strategy portfolio is important because trading performance depends on strategy portfolios. Despite of the importance of designing strategy portfolio, rule of thumb methods have been used to select trading strategies. In this study, we propose a SVM-based strategy portfolio management system. SVM were introduced by Vapnik and is known to be effective for data mining area. It can build good portfolios within a very short period of time. Since SVM minimizes structural risks, it is best suitable for the futures trading market in which prices do not move exactly the same as the past. Our system trading strategies include moving-average cross system, MACD cross system, trend-following system, buy dips and sell rallies system, DMI system, Keltner channel system, Bollinger Bands system, and Fibonacci system. These strategies are well known and frequently being used by many professional traders. We program these strategies for generating automated system signals for entry and exit. We propose SVM-based strategies selection system and portfolio construction and order routing system. Strategies selection system is a portfolio training system. It generates training data and makes SVM model using optimal portfolio. We make $m{\times}n$ data matrix by dividing KOSPI 200 index futures data with a same period. Optimal strategy portfolio is derived from analyzing each strategy performance. SVM model is generated based on this data and optimal strategy portfolio. We use 80% of the data for training and the remaining 20% is used for testing the strategy. For training, we select two strategies which show the highest profit in the next day. Selection method 1 selects two strategies and method 2 selects maximum two strategies which show profit more than 0.1 point. We use one-against-all method which has fast processing time. We analyse the daily data of KOSPI 200 index futures contracts from January 1990 to November 2011. Price change rates for 50 days are used as SVM input data. The training period is from January 1990 to March 2007 and the test period is from March 2007 to November 2011. We suggest three benchmark strategies portfolio. BM1 holds two contracts of KOSPI 200 index futures for testing period. BM2 is constructed as two strategies which show the largest cumulative profit during 30 days before testing starts. BM3 has two strategies which show best profits during testing period. Trading cost include brokerage commission cost and slippage cost. The proposed strategy portfolio management system shows profit more than double of the benchmark portfolios. BM1 shows 103.44 point profit, BM2 shows 488.61 point profit, and BM3 shows 502.41 point profit after deducting trading cost. The best benchmark is the portfolio of the two best profit strategies during the test period. The proposed system 1 shows 706.22 point profit and proposed system 2 shows 768.95 point profit after deducting trading cost. The equity curves for the entire period show stable pattern. With higher profit, this suggests a good trading direction for system traders. We can make more stable and more profitable portfolios if we add money management module to the system.

Does the Pandemic Declaration influence the Firm Value of the Untact Firms? (팬데믹 선언이 언택트 기업의 기업가치에 미치는 영향: 투자자 마니아 가설을 중심으로)

  • Park, Su-Kyu;Cho, Jin-Hyung
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.1
    • /
    • pp.247-262
    • /
    • 2022
  • Purpose - The purpose of this study is to examine the impact of the Pandamic Declaration on 'untact firms' listed in KOSPI and KOSDAQ market in order to verify Investor Mania Hypothesis. Design/methodology/approach - This study collected financial data for 44 untact firms in KOSPI and KOSDAQ market. Then, we employed ESM(Event Study Methodology), EGARCH model and DID(Difference-In-Difference) for analysis. Findings - First, in contrast with the benchmarking index, KOSPI 200 which shows a negative (-) abnormal return trend, the untact firms have positive abnormal return trend consistently. Second, after the Pandemic Declaration, the variability of abnormal return for the untact firms is found to be significantly positive. Third, we find that the cumulative abnormal return and volatility of the untact firms significantly increase after the Pandemic Declaration. Research implications or Originality - Based on the Investor Mania Hypothesis, we confirm that the market potential of untact firms after the Pandemic Declaration is observed when compared with the KOSPI 200.

Buy-Sell Strategy with Mean Trend and Volatility Indexes of Normalized Stock Price (정규화된 주식가격의 평균추세-변동성 지표를 이용한 매매전략 -KOSPI200 을 중심으로-)

  • Yoo, Seong-Mo;Kim, Dong-Hyun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.277-283
    • /
    • 2005
  • In general, stock prices do not follow normal distributions and mean trend indexes, volatility indexes, and volume indicators relating to these non-normal stock price are widely used as buy-sell strategies. These general buy-sell strategies are rather intuitive than statistical reasoning. The non-normality problem can be solved by normalizing process and statistical buy-sell strategy can be obtained by using mean trend and volatility indexes together with normalized stock prices. In this paper, buy-sell strategy based on mean trend and volatility index with normalized stock prices are proposed and applied to KOSPI200 data to see the feasibility of the proposed buy-sell strategy.

  • PDF