선물 및 옵션의 만기결제와 관련된 정보비대칭 상황은 각 투자자 집단의 거래활동에 가시적인 영향을 줄 수 있다. 이러한 가능성을 조사하기 위해서 본 연구는 만기일을 제외한 파생상품의 life cycle을 시간의 경과에 따라 3개의 구간으로 설정한 후, 각 투자자 유형의 거래활동이 각 구간별로 보이는 변화 패턴을 조사하였다. 조사된 KOSPI200 지수 파생상품시장의 투자자 유형별 거래행태는 Foster and Viswanathan(1990)의 전략적 유동성 거래자 모형을 통해서 해석되었다. 한편, 투자자 유형별로 KOSPI200 지수 파생상품의 만기결제와 관련된 정보우위성을 측정 및 비교함으로써 정보비대칭 정도 및 정보거래자의 확인(identification) 문제에 조금 더 접근할 수 있었다. 본 연구의 주요 결과는 다음과 같이 요약된다. 첫째, 투자자 집단의 거래활동은 KOSPI200 지수 파생상품의 life cycle에 따라 3가지 유형(ㄱ자형, L자형, U자형)의 패턴으로 요약된다. ㄱ자형은 만기일 이전 1주일 동안 거래활동을 축소하는 패턴이고, L자형은 만기일 이후 1주일 동안 거래활동을 확대하는 패턴이고, U자형은 만기일 이전 1주일과 만기일 이후 1주일 동안 거래활동을 확대하는 패턴이다. 둘째, 개인투자자는 파생상품 life cycle과 관련하여 대형주 종목군을 대상으로 ㄱ자형 거래패턴(선물만기 기준)과 U자형 거래패턴(옵션 단독만기 기준)을 보인다. 이러한 거래패턴은 Foster and Viswanathan(1990)의 전략적 유동성 거래자 모형의 예상과 일치하였다. 셋째, 파생상품 life cycle과 관련하여 외국인투자자의 거래행태는 부분적으로 전략적 유동성 거래자 모형의 예상과 일치하였으나, 기관투자자의 거래행태는 전략적 유동성 거래자 모형의 예상과 무관하였다. 우리나라 주식시장의 전체 거래규모에서 가장 큰 비중을 차지하는 개인투자자가 파생상품의 만기와 관련하여 전략적으로 유동성 거래를 수행한다는 점은 파생상품의 life cycle이 주식시장에 주기적으로 영향을 주는 중요한 경로임을 의미한다. 본 연구는 이러한 경로를 새로이 규명하였다는 점에서 의미를 가진다.
본 연구에서는 코스피200 주식시장, 선물시장, 옵션시장 등의 투자자별 거래량을 동시에 고려하여 각 시장의 변동성에 어떤 영향을 미치는지를 알아보았다. 실증분석결과를 요약하면 다음과 같다. 첫째, 주식시장 및 선물시장의 변동성은 다른 시장의 거래정보에 의해서도 영향을 받는다. 이는 한 시장의 변동성이 다른 시장의 거래정보에 의해서 영향을 받는다는 것이다. 변동성에 대한 거래정보의 교차시장효과(cross-market effect)가 존재함을 의미한다. 둘째, 옵션시장의 변동성은 투자자들의 거래정보로는 설명되지 않는다. 이는 옵션시장의 변동성이 한 달 미래의 기초자산의 변동성에 대한 기대를 반영하고 있기 때문이다. 셋째, 전반적으로 개인의 경우 변동성을 증가시키는 것으로 나타났으며, 기관과 외국인 투자자의 경우 변동성을 감소시키는 것으로 나타났다. 이러한 연구결과는 변동성이 주요한 변수로 작용하는 영역인 투자전략, 위험관리, 금융시장 안정화방안 등에 활용될 수 있을 것이다.
학계와 금융파생상품 가격결정이나 변동성매매와 같은 실무영역 모두에서 주식시장의 변동성은 중요한 역할을 한다. 본 연구는 GARCH 모형에 기초하여 한국주식시장의 변동성을 정확히 예측함으로써 변동성매매시스템의 성과를 높일 수 있는 새로운 방법을 제시하였다. 특히, 여러 연구 자료에서 밝혀지고 있는 변동성 비대칭성개념을 도입하였다. 최근 새로 개발된 한국주식시장 변동성 지수인 VKOSPI를 변동성 대용값으로 사용한다. VKOSPI는 KOSPI 200 지수옵션의 가격을 이용하여 계산된 값으로서 옵션딜러들의 변동성 예측치를 반영하고 있다. KOSPI 200 옵션시장은 1997년 시작되었으며, 발전을 거듭하여 현재 하루 거래량이 1,000만 계약을 넘어서면서 세계 최고의 지수옵션시장으로 발전하였다. 이러한 옵션시장에 반영된 변동성을 분석하는 것은 투자자들에게 좋은 투자정보를 제공하게 될 것이다. 특히, 변동성 대용값으로 VKOSPI를 사용하면 다른 변동성 대용치를 사용할 때 발생하는 통계적 추정의 문제를 피해 갈 수 있다. 본 연구는 2003년부터 2006년의 KOSPI 200 지수 일별자료를 대상으로 최우도추정방법(MLE)을 이용하여 GARCH 모형을 추정한다. 비대칭 GARCH 모형으로는 Glosten, Jagannathan, Runke의 GJR-GARCH 모형, Nelson의 EGARCH 모형, 그리고 Ding, Granger, Engle의 PARCH모형을 포함하며 대칭 GARCH 모형은 (1, 1) GARCH 모형을 이용한다. 2007년부터 2009년까지의 KOSPI 200 지수 일별자료를 대상으로 반복적 계산과정을 통해 내일의 변동성 예측값과 오르고 내리는 변화방향을 예측하였다. 분석 결과 시장변동성과 예기치 않은 주가변동 사이에는 음의 상관관계가 존재하며, 음의 주가변동은 동일한 크기의 양의 주가변동보다 훨씬 더 큰 변동성의 증가를 가져옴을 알 수 있다. 즉, 한국 주식시장에도 변동성 비대칭성이 존재함을 보여주었다. GARCH 모형을 이용하여 내일의 VKOSPI의 등락방향을 예측하고 이를 이용하여 변동성 매매시스템을 개발하였다. 내일의 변동성이 상승할 것으로 예측되면 스트래들매수전략을 이용하고 반대로 변동성이 하락할 것으로 예측되면 스트래들 매도전략을 이용한다. 변동성의 변화방향성을 맞춘 경우에는 VKOSPI 변동분을 더하고 틀린 경우에는 변동분을 뺀 누적합을 이용하여 변동성매매전략의 총수익을 계산한다. 모형추정용 자료구간의 경우 통계적 기준인 MSPE 기준으로는 PARCH 모형의 적합도가 가장 높고, 예측방향의 적중도를 재는 MCP 기준으로는 EGARCH 모형이 가장 높은 값을 보여주었다. 테스트용 자료구간의 경우에는 PARCH 모형이 모형적합도와 내일의 변동성 등락방향 예측에서 가장 좋은 결과를 보여주었다. 모형추정용 자료구간의 경우 GARCH 모형 전체에서 매매이익을 기록하고 있고 테스트용 자료구간의 경우에는 EGARCH 모형을 제외한 GARCH 모형들이 매매이익을 보여주었다. 본 연구에서 나타난 변동성의 군집과 비대칭성 현상으로부터 변동성에 비선형성이 존재함을 알 수 있었으며, 비선형성에서 좋은 결과를 보이고 있는 인공지능시스템과 비대칭 GARCH 모형을 결합한다면 제안된 변동성매매시스템의 성과를 많이 개선할 수 있을 것으로 판단된다.
본 연구에서는 우리나라의 증권시장의 자료를 이용하여 브로커와 정보거래자가 동시에 거래하는 전략적 거래모형들의 기본적인 가정에 관한 타당성을 경험적으로 분석하였다. 이론적 연구를 간단히 요약한 뒤 관련되는 경험적 연구들을 외국의 연구와 국내의 연구로 나누어 정리하였다. 우리나라의 KOSPI 200 주가지수 선물시장에서 2001년부터 2003년까지 3년간 737일 간의 일별 거래현황 자료를 이용한 실증분석의 주요한 결론은 다음과 같다. 첫째, 동기간 동안의 평균적 거래로 보아 외국인과 증권회사 간의 거래는 김승탁(2000) 모형의 정보거래자와 브로커의 거래와 일치하는 반면에 증권회사와 개인의 거래결과는 김승탁 모형의 가정과 일치하지 않았다. 둘째, 각 유형별 투자자들의 비기대순매수량 증가율 간의 교차상관함수 분석을 통하여 2001년과 2003 기간 중 일별거래 전체에서는 외국인과 증권회사, 그리고 개인은 특별히 서로 상관된 거래를 수행한다는 증거를 찾을 수는 없었다. 셋째, 비기대순매수량의 변화가 가장 큰 30개 거래일과 가장 적은 30일 동안의 외국인투자가, 증권회사 및 개인투자가 등 각 유형별 투자자들의 거래 형태에 관한 적합도 검정을 통하여 각 당사자들의 거래는 서로 상관성이 있다는 것을 알 수가 있었다. 이를 통하여 김승탁 모형의 기본적 가정의 타당성을 간접적으로 지지하였다. 마지막으로 본 연구의 한계점과 앞으로의 연구방향을 제시하였다.
주가에 영향을 미치는 정보는 장 중 뿐만 아니라 거래가 중단되고 있는 밤사이에도 계속해서 발생하고 있다. 거래가 중단되고 있는 비거래시간대에 발생하는 정보는 밤사이 누적되어 있다가 아침 동시호가에 한꺼번에 반영되면서 주가의 변동성을 확대시킬 수 있다. 본 연구는 비거래시간대의 주식시장정보가 장중 주가변동성에 미치는 영향을 분석하고자 한다. 분석모형으로는 시계열통계모형과 변동성지수모형을 제시한다. 실증분석을 위한 표본자료는 2008년 3월 3일부터 2010년 6월 22일까지의 578일간의 KOSPI 200 주가지수와 VKOSPI 지수의 일별 시가지수와 종가지수이다. 실증분석 결과 비거래시간대의 시장정보가 호재가 많아 아침 시가가 상승으로 시작하는 날은 장중변동성이 추가 하락할 확률이 커짐을 밝혔다. 한국거래소가 2010년 하반기를 목표로 VKOSPI 선물을 상장시킬 것으로 예상되어, 본 연구의 결과는 투자자들에게 중요한 투자정보를 제공하게 될 것으로 예상된다.
투자자들은 증권회사가 제공하는 시세표인 Limit Order Book 정보를 통해 국내외 투자자들이 제출하는 주문 정보를 실시간으로 파악하면서 거래에 참여하고 있다. Limit Order Book에 실시간으로 공개되고 있는 주문 정보가 주가 예측에서 유용성이 있을까? 본 연구는 장 중 투자자들의 매수와 매도 주문이 어느 한쪽으로 쏠리면서 주문 불균형이 나타나는 경우 미래 주가 등락의 예측 변수로서 유의성이 있는지를 분석하는 것이다. 분류 알고리즘을 이용하여 주문 불균형 정보의 당일 종가 등락에 대한 예측 정확도를 높이고, 예측 결과를 이용한 데이트레이딩 전략을 제안하며 실증분석을 통해 투자 성과를 분석한다. 자료는 2004년 1월 19일부터 2022년 6월 30일까지의 4,564일 동안의 코스피200 주가지수선물 5 분 봉 주가를 분석하였다. 실증분석 결과는 다음과 같다. 첫째, 총매수 주문량과 총매도 주문량의 불균형 정도로 측정하는 주문 불균형지수와 주가는 유의적 상관성을 보인다. 둘째, 주문 불균형 정보는 당일 종가까지의 미래 주가 등락에 대해서도 유의적인 영향력이 나타났다. 셋째, 주문 불균형 정보를 이용한 당일 종가 등락의 예측 정확도는 Support Vector Machines 알고리즘이 54.1%로 가장 높게 나타났다. 넷째, 하루 중 이른 시점에서 측정한 주문 불균형지수가 늦은 시점에서 측정한 주문 불균형지수보다 예측 정확성이 더 높았다. 다섯째, 종가 등락 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 비교모형의 투자 성과보다 높게 나타났다. 여섯째, 분류 알고리즘을 이용한 투자 성과는 K-Nearest Neighbor 알고리즘을 제외하면 모두 비교모형보다 총수익 평균이 높게 나타났다. 일곱째, Logistic Regression, Random Forest, Support Vector Machines, XGBoost 알고리즘의 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 수익성과 위험성을 동시에 평가하는 샤프비율에서도 비교모형보다 높은 결과를 보여주었다. 본 연구는 Limit Order Book 정보 중 총매수 주문량과 총매도 주문량 정보의 경제적 가치가 존재함을 밝혔다는 점에서 기존의 연구와 학술적 차별점을 갖는다. 본 연구의 실증분석 결과는 시장 참여자들에게 투자 전략적 측면에서 함의가 있다고 판단된다. 향후 연구에서는 최근 활발히 연구가 진행되고 있는 딥러닝 모형 등으로의 확장을 통해 주가 예측의 정확도를 높임으로써 데이트레이딩 투자전략의 성과를 개선할 필요가 있다.
본 논문은 KOSPI 200 지수옵션 시장을 대상으로 각 월별 옵션 만기시 원월물에서 근월물로 바뀌는 옵션의 이월현상 효과를 분석하였다. KOSPI 200 지수옵션 시장은 외국의 제반 옵션 시장과는 달리 거래가 근월물에만 집중되고, 근월물에 대한 거래가 근월물의 만기일에도 매우 활발하게 이루어지는 특색을 갖고 있다. 따라서 원월물에서 근월물로 이전되는 과정에서 만기이월에 따라 옵션 가격이 영향을 받는다면, 이는 학술적으로는 옵션시장의 효율성에 대하여, 실무적으로는 옵션 거래전략에 대하여 함의를 갖는다고 말할 수 있다. 본 연구는 1999년부터 2001년까지의 KOSPI 200 지수옵션의 내재변동성을 활용하여 이루어줬으며 다음과 같은 결과를 얻었다. 첫째, 만기일을 포함한 주의 월요일부터 다음 월요일까지, 그리고 만기일 주간의 수요일에서 금요일까지 각 기간 동안의 콜옵션 가격은 전반적으로 하락하는 현상이 발생하였다. 둘째, 기간을 세분화하여 분석하였을 때, 콜옵션은 근월물의 만기일인 목요일에는 가격상승 현상이 나타났으나 해당옵션이 근월물이 된 금요일에는 더 큰 폭의 가격하락 현상이 나타났다. 반대로 풋 옵션은 목요일에는 가격하락 현상이, 금요일에는 가격상승 현상이 나타났다. 이러한 만기 이월현상은 처음으로 밝혀졌으며 그 방향성이 근월물의 만기일에는 옵션을 활용한 복제선물에의 매수포지션, 만기 익일에는 반대로 매도포지션으로 나타난 점은 KOSPI 200 지수 선물의 전반적인 저평가 현상에 대한 차익거래의 수단으로 투자자들이 옵션 시장을 활용한다는 개연성에 대한 증거가 된다. 이러한 결과는 옵션의 가격이 완전시장 가정 하에서 옵션의 가격에 영향을 미친다고 간주되는 변수들뿐만 아니라 옵션의 근월물 여부에도 영향 받고 있음을 의미하며, 이는 효율적 시장가설이나 완전시장 가설에 배치된다고 할 수 있다. 또한 위와 같은 결과를 바탕으로 투자전략을 수립할 때, 시장거래자중 콜옵션을 매수하려고 하는 투자자는 만기일 이후에, 반대로 콜옵션을 매도하려고 하는 투자자는 만기가 포함된 주 초반에 하는 것이 더 효과적임을 의미한다.
주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.
매매시점결정은 금융시장에서 초과수익을 얻기 위해 사용되는 투자전략이다. 일반적으로, 매매시점 결정은 거래를 통한 초과수익을 얻기 위해 언제 매매할 것인지를 결정하는 것을 의미한다. 몇몇 연구자들은 러프집합분석이 매매시점결정에 적합한 도구라고 주장하였는데, 그 이유는 이 분석방법이 통제함수를 이용하여 시장의 패턴이 불확실할 때에는 거래를 위한 신호를 생성하지 않는다는 점 때문이었다. 러프집합은 분석을 위해 범주형 데이터만을 이용하므로, 분석에 사용되는 데이터는 연속형의 수치값을 이산화하여야 한다. 이산화란 연속형 수치값의 범주화 구간을 결정하기 위한 적절한 "경계값"을 찾는 것이다. 각각의 구간 내에서의 모든 값은 같은 값으로 변환된다. 일반적으로, 러프집합 분석에서의 데이터 이산화 방법은 등분위 이산화, 전문가 지식에 의한 이산화, 최소 엔트로피 기준 이산화, Na$\ddot{i}$ve and Boolean reasoning 이산화 등의 네 가지로 구분된다. 등분위 이산화는 구간의 수를 고정하고 각 변수의 히스토그램을 확인한 후, 각각의 구간에 같은 숫자의 표본이 배정되도록 경계값을 결정한다. 전문가 지식에 의한 이산화는 전문가와의 인터뷰 또는 선행연구 조사를 통해 얻어진 해당 분야 전문가의 지식에 따라 경계값을 정한다. 최소 엔트로피 기준 이산화는 각 범주의 엔트로피 측정값이 최적화 되도록 각 변수의 값을 재귀분할 하는 방식으로 알고리즘을 진행한다. Na$\ddot{i}$ve and Boolean reasoning 이산화는 Na$\ddot{i}$ve scaling 후에 그로 인해 분할된 범주값을 Boolean reasoning 방법으로 종속변수 값에 대해 최적화된 이산화 경계값을 구하는 방법이다. 비록 러프집합분석이 매매시점결정에 유망할 것으로 판단되지만, 러프집합분석을 이용한 거래를 통한 성과에 미치는 여러 이산화 방법의 효과에 대한 연구는 거의 이루어지지 않았다. 본 연구에서는 러프집합분석을 이용한 주식시장 매매시점결정 모형을 구성함에 있어서 다양한 이산화 방법론을 비교할 것이다. 연구에 사용된 데이터는 1996년 5월부터 1998년 10월까지의 KOSPI 200데이터이다. KOSPI 200은 한국 주식시장에서 최초의 파생상품인 KOSPI 200 선물의 기저 지수이다. KOSPI 200은 제조업, 건설업, 통신업, 전기와 가스업, 유통과 서비스업, 금융업 등에서 유동성과 해당 산업 내의 위상 등을 기준으로 선택된 200개 주식으로 구성된 시장가치 가중지수이다. 표본의 총 개수는 660거래일이다. 또한, 본 연구에서는 유명한 기술적 지표를 독립변수로 사용한다. 실험 결과, 학습용 표본에서는 Na$\ddot{i}$ve and Boolean reasoning 이산화 방법이 가장 수익성이 높았으나, 검증용 표본에서는 전문가 지식에 의한 이산화가 가장 수익성이 높은 방법이었다. 또한, 전문가 지식에 의한 이산화가 학습용과 검증용 데이터 모두에서 안정적인 성과를 나타내었다. 본 연구에서는 러프집합분석과 의사결정 나무분석의 비교도 수행하였으며, 의사결정나무분석은 C4.5를 이용하였다. 실험결과, 전문가 지식에 의한 이산화를 이용한 러프집합분석이 C4.5보다 수익성이 높은 매매규칙을 생성하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.