• Title/Summary/Keyword: KOSPI Market

Search Result 309, Processing Time 0.031 seconds

A Methodology for Efficient Portfolio Management Using Inventory Control Technique (재고통제기법을 이용한 효율적 포트폴리오 관리 방안)

  • Ryu, Jae-Pil;Shin, Hyun-Joon
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.163-169
    • /
    • 2012
  • This paper proposes an efficient portfolio management methodology named sSPPM with consideration of risk and required return. sSPPM employs Markowitz's portfolio model to select securities and adopts ($s$, $S$) policy that is a well-known technique in the inventory control area to revise the current portfolio. Computational experiments using virtual stock prices generated by monte carlo simulation method as well as real stock ones of KOSPI for recent 4 years are conducted to show the excellence of the portfolio management under ($s$, $S$) policy framework. The result shows that sSPPM is remarkably superior to both 6 or 12 months based periodic portfolio revision method and market (KOSPI index).

Does the Business Survey Index of the Federation of Korean Industries at the Service Industry Lead the domestic stock market ? (서비스 산업에서 전경련 BSI지수는 주식시장을 예측할 수 있는가?)

  • Kim, Joo Il;Kim, Byoung ryul
    • Journal of Service Research and Studies
    • /
    • v.6 no.3
    • /
    • pp.41-54
    • /
    • 2016
  • We examine the information transmission between the business survey index(BSI) based on the returns data offered by Federation of Korean Industries and KOSPI Index based on the returns data offered by Korea Bank. The data includes monthly return data from January 1998 to September 2015. The results of the analysis are as follows. Firstly, results of Granger Causality test suggests the existence of mutual causality KOSPI Index precede and have explanatory power BSI. Secondly, the results of impulse response function suggest that BSI Index show immediate response to KOSPI Index and are influenced by till time 4 From time 2 the impact gradually disappears. Also KOSPI Index show immediate response to BSI and are influenced by till time 4 From time 2 the impact gradually disappears. Lastly, the variance decomposition analysis showed a high influence of the KOSPI Index on the BSI and significant influence of the BSI on the KOSPI Index. This implies that returns on the KOSPI Index have a significant influence over returns on the BSI. The study is a further extension of existing studies on information transmission mechanism between the BSI and KOSPI. Finally, our results can be used as a guide by the Korea Bank and Republic of Korea and as well as Federation of Korean Industries.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

KOSPI 200 Futures Trading Activities and Stock Market Volatility (KOSPI 200 선물의 거래활동과 현물 주식시장의 변동성)

  • Kim, Min-Ho;Nielsen, James;Oh, Hyun-Tak
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.235-261
    • /
    • 2003
  • We examine the relationship between the trading activities of Korea Stock Price Index (KOSPI) 200 futures contract and its underlying stock market volatility for about six years from May 1996 when the futures contract was introduced. The trading activities of the futures contracts are proxied by the volume and open interest, which are divided into expected and unexpected portions by using the previous data. The daily, intradilay, and overnight cash volatility is estimated by the GJR-GARCH model. We find a positive contemporaneous relationship between the intradaily stock market volatility and the unexpected futures volume while the relationship between the volatility and expected futures volume is weakly negative or non-existent. We also find that the unexpected futures volume strongly causes intradaily cash volatility. On the other hand, the overnight cash volatility causes the unexpected futures volume. The impulse responses between these variables are all positive. The result implies that during a trading time futures trading tends to increase the cash volatility while the unexpected overnight changes in cash volatility tends to increase the futures trading activities. We, however, find no association between the cash volatility and futures maturities.

  • PDF

The Empirical Study about the World Economy Synchronization using Returns Transitions between Stock Markets (주식시장의 수익률 전이로 살펴본 세계경제 동조화에 관한 실증연구)

  • Roh, Sang-Youn
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.443-456
    • /
    • 2010
  • This study is an empirical research of the stock markets to prove the synchronization phenomenon of the world economy. For this research I analyzed Korea's KOSPI, USA's DOW & NASDAQ reflecting stock markets in North America, Japan's NIKKEI in Asia, and Germany's DAX in Europe. Because the raw series are not stationary, they are to be transformed to returns series. The results of the study are follows: First of all, there are significant causalities between KOSPI's returns and those of other indices. Second, feedback effects are found between the market returns with several time lags. Third, there are 4 cointegrating equations which embody the relation of the five returns series. And forth, KOSPI reacts more sensitively to impacts from the foreign indices compared to the other indices do when they got impacts from each other except KOSPI. On conclusion, there exists a clear evidence for the synchronization phenomenon in returns of the stock indices, and we can expect Korea market may get similar changes depending on the economic changes of North America, Europe, or Asia. Therefore more closing researches should be conducted about the world economy synchronization in various fields as soon as possible.

Analysis of the Stock Market Network for Portfolio Recommendation (주식 포트폴리오 추천을 위한 주식 시장 네트워크 분석)

  • Lee, Yun-Jung;Woo, Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.48-58
    • /
    • 2013
  • The stock market is constantly changing and sometimes a slump or a sudden rising in stocks happens without any special reason. So the stock market is recognized as a complex system and it is hard to predict the change on stock prices. In this paper we consider the stock market to a network consisting of stocks. We analyzed the dynamics of the Korean stock market network and evaluated the changing of the correlation between shares consisting of the time series data of 137 companies belong to KOSPI200. Our analysis shows that the stock prices tend to plummet when the correlation between stocks is very high. We propose a method for recommending the stock portfolio based on the analysis of the stock market network. To show the effectiveness of the recommended portfolio, we conducted the simulated stock investment and compared the recommended portfolio with the efficient portfolio proposed Markowitz. According to the experiment results, the rate of return of the portfolio is about 10.6% which is about 3.7% and 5.6% higher than the average rate of return of the efficient portfolio and KOSPI200 respectively.

A study on Industries's Leading at the Stock Market in Korea : Gradual Diffusion of Information and Cross-Asset Return Predictability (산업의 주식시장 선행성에 관한 실증분석 : 정보의 점진적 확산과 자산간 수익률 예측 가능성)

  • Lee, Hae-Young;Kim, Jong-Kwon
    • The Korean Journal of Financial Management
    • /
    • v.25 no.1
    • /
    • pp.23-49
    • /
    • 2008
  • We test the hypothesis that the gradual diffusion of information across asset markets leads to cross-asset return predictability in Korea. And, the aim of this paper is related to forecast the stock market, business cycle index and industrial production by various indicators of economic activities in Korea. For this, our paper sets models and focuses on empirical test. The stock market on this month correlate with industries in Korea. The stock market doesn't lead to industries. The industries and macroeconomic variables have high correlation. We test that gradual diffusion of industrial information will predict stock market in Korea. For this, we analysis on possibility of Granger cause by VAR models between industries and stock market. As a result, 21 portfolios cause to Kospi statistically significance at 5%. Especially, the Beverage portfolio has bilateral Granger causality to Kospi. In case of Internet and Cosmetics portfolio, Kospi has unilateral Granger causality to it. The predictability of specific industries has a relation to Macroeconomic variables. What industrial portfolios predict to Business Coincidence Index? The only 6 industrial portfolios of 36 portfolios have a statistically significance at 10%. And, 9 portfolios have a statistically significance at 5%.

  • PDF

Information in the Implied Volatility Curve of Option Prices and Implications for Financial Distribution Industry (옵션 내재 변동성곡선의 정보효과와 금융 유통산업에의 시사점)

  • Kim, Sang-Su;Liu, Won-Suk;Son, Sam-Ho
    • Journal of Distribution Science
    • /
    • v.13 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose - The purpose of this paper is to shed light on the importance of the slope and curvature of the volatility curve implied in option prices in the KOSPI 200 options index. A number of studies examine the implied volatility curve, however, these usually focus on cross-sectional characteristics such as the volatility smile. Contrary to previous studies, we focus on time-series characteristics; we investigate correlation dynamics among slope, curvature, and level of the implied volatility curve to capture market information embodied therein. Our study may provide useful implications for investors to utilize current market expectations in managing portfolios dynamically and efficiently. Research design, data, and methodology - For our empirical purpose, we gathered daily KOSPI200 index option prices executed at 2:50 pm in the Korean Exchange distribution market during the period of January 2, 2004 and January 31, 2012. In order to measure slope and curvature of the volatility curve, we use approximated delta distance; the slope is defined as the difference of implied volatilities between 15 delta call options and 15 delta put options; the curvature is defined as the difference between out-of-the-money (OTM) options and at-the-money (ATM) options. We use generalized method of moments (GMM) and the seemingly unrelated regression (SUR) method to verify correlations among level, slope, and curvature of the implied volatility curve with statistical support. Results - We find that slope as well as curvature is positively correlated with volatility level, implying that put option prices increase in a downward market. Further, we find that curvature and slope are positively correlated; however, the relation is weakened at deep moneyness. The results lead us to examine whether slope decreases monotonically as the delta increases, and it is verified with statistical significance that the deeper the moneyness, the lower the slope. It enables us to infer that when volatility surges above a certain level due to any tail risk, investors would rather take long positions in OTM call options, expecting market recovery in the near future. Conclusions - Our results are the evidence of the investor's increasing hedging demand for put options when downside market risks are expected. Adding to this, the slope and curvature of the volatility curve may provide important information regarding the timing of market recovery from a nosedive. For financial product distributors, using the dynamic relation among the three key indicators of the implied volatility curve might be helpful in enhancing profit and gaining trust and loyalty. However, it should be noted that our implications are limited since we do not provide rigorous evidence for the predictability power of volatility curves. Meaning, we need to verify whether the slope and curvature of the volatility curve have statistical significance in predicting the market trough. As one of the verifications, for instance, the performance of trading strategy based on information of slope and curvature could be tested. We reserve this for the future research.

Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors (해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측)

  • Kim, Tae Seung;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.367-374
    • /
    • 2021
  • Stock price prediction is a subject of research in various fields such as economy, statistics, computer engineering, etc. In recent years, researches on predicting the movement of stock prices by learning artificial intelligence models from various indicators such as basic indicators and technical indicators have become active. This study proposes a deep learning model that predicts the ups and downs of KOSPI from overseas indices such as S&P500, past KOSPI indices, and trading trends by KOSPI investors. The proposed model extracts a latent variable using a stacked auto-encoder to predict stock price fluctuations, and predicts the fluctuation of the closing price compared to the market price of the day by learning an LSTM suitable for learning time series data from the extracted latent variable to decide to buy or sell based on the value. As a result of comparing the returns and prediction accuracy of the proposed model and the comparative models, the proposed model showed better performance than the comparative models.

A Study on the Cross Hedge Performance of KOSPI 200 Stock Index Futures (코스피 200 주가지수선물을 이용한 교차헤지 (cross-hedge))

  • Hong, Chung-Hyo;Moon, Gyu-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.23 no.1
    • /
    • pp.243-266
    • /
    • 2006
  • This paper tests cross hedging performance of the KOSPI 200 stock index futures to hedge the downside risk of the KOSPI, KOSPI 200 and KOSDAQ50 spot market. For this purpose we introduce the minimum variance hedge model, bivariate GARCH(1,1) and EGARCH(1,1) model as hedge models. The main results are as follows; First, we find that the direct hedge performance of KOSPI 200 index futures is better than those of indirect hedge performance. second, in case or cross hedge performance the hedge effect of KOSPI 200 stock index futures market against KOSPI 200 stock index spot market is relatively better than those of KOSPI 200 index futures against KOSPI and KOSDAQ spot position. Third, for the out-sample, hedging effectiveness of the risk-minimization with constant hedge ratios is higher than those of the time varying bivariate GARCH(1,1) and EGARCH(1,1) model. In conclusion, investors are encouraged to use simple risk-minimization model rather than the time varying hedge models like GARCH and EGARCH model to hedge the position of the Korean stock index cash markets.

  • PDF