• Title/Summary/Keyword: KOSPI Index

Search Result 234, Processing Time 0.024 seconds

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.73-80
    • /
    • 2024
  • In this paper, we proposes a method to improve the accuracy of predicting the Korea Composite Stock Price Index (KOSPI) by combining topic modeling and Long Short-Term Memory (LSTM) neural networks. In this paper, we use the Latent Dirichlet Allocation (LDA) technique to extract ten major topics related to interest rate increases and decreases from financial news data. The extracted topics, along with historical KOSPI index data, are input into an LSTM model to predict the KOSPI index. The proposed model has the characteristic of predicting the KOSPI index by combining the time series prediction method by inputting the historical KOSPI index into the LSTM model and the topic modeling method by inputting news data. To verify the performance of the proposed model, this paper designs four models (LSTM_K model, LSTM_KNS model, LDA_K model, LDA_KNS model) based on the types of input data for the LSTM and presents the predictive performance of each model. The comparison of prediction performance results shows that the LSTM model (LDA_K model), which uses financial news topic data and historical KOSPI index data as inputs, recorded the lowest RMSE (Root Mean Square Error), demonstrating the best predictive performance.

A Study on Price Discovery and Dynamic Interdependence of ETF Market Using Vector Error Correction Model - Focuse on KODEX leverage and inverse - (VECM을 이용한 상장지수펀드 시장의 가격발견과 동태적 상호의존성 - KODEX 레버리지와 인버스 중심으로 -)

  • Kim, Soo-Kyung;Kim, Woo-Hyun;Byun, Youngtae
    • Management & Information Systems Review
    • /
    • v.38 no.1
    • /
    • pp.141-153
    • /
    • 2019
  • This study attempts to analyze the role of price discovery and the dynamic interdependence between KOSPI200 Index and KODEX Leverage(KODEX inverse), which are Korea's representative ETFs, using the vector error correction model. For the empirical analysis, one minute data of KODEX leverage, KODEX inverse and KOSPI200 index from April 10, 2018 to July 10, 2018 were used. The main results of the empirical analysis are as follows. First, between KODEX Leverage and KOSPI200 index, we found evidence that KODEX leverage plays a dominant role in price discovery. In addition, the KOSPI200 index is superior to price discovery between KODEX inverse and KOSPI200 index. Second, the KOSPI200 index has a relatively strong dependence on KODEX leverage, which is consistent with the KODEX leverage index playing a dominant role in price discovery compared to the KOSPI200 index. On the other hand, KOSPI200 index has a dependency on KODEX inverse index, but it is weaker than KODEX leverage index. These results are expected to be useful information for investors in capital markets.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Development of Options Trading System using KOSPI 200 Volatility Index (코스피 200 변동성지수를 이용한 옵션투자 정보시스템의 개발)

  • Kim, Sun Woong;Choi, Heung Sik;Oh, Jeong Hwan
    • Journal of Information Technology Services
    • /
    • v.13 no.2
    • /
    • pp.151-161
    • /
    • 2014
  • KOSPI 200 index options market has the highest trading volume in the global options markets. The risk and return structure of options contracts are very complex. Volatility complicates options trading because volatility plays a central role in options pricing process. This study develops a trading system for KOSPI 200 index options trading using KOSPI 200 volatility index. We design a database system to handle the complex options information such as price, volume, maturity, strike price, and volatility using Oracle DBMS. We then develop options trading strategies to test how the volatility index is related to the prices of complicated options trading strategies. Back test procedure is presented with PL/SQL of Oracle DBMS. We simulate the suggested trading system using historical data set of KOSPI 200 index options from December 2008 to April 2012.

Analysis of the Impact of US, China, and Korea Macroeconomic Variables on KOSPI and VKOSPI (미국·중국·한국 거시경제변수가 한국 주식수익률 및 변동성 지수 변화율에 미치는 영향 분석)

  • Jung-Hoon Moon;Gyu-Sik Han
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.209-223
    • /
    • 2024
  • Purpose - This article analyzes the impact of macroeconomic variables of the United States, China, and Korea on KOSPI and VKOSPI, in that United States and China have a great influence on Korea, having an export-driven economy. Design/methodology/approach - The influence of US, China, and Korea interest rates, industrial production index, consumer price index, US employment index, Chinese real estate index, and Korea's foreign exchange reserves on KOSPI and VKOSPI is analyzed on monthly basis from Jan 2012 to Aug 2023, using multifactor model. Findings - The KOSPI showed a positive relationship with the U.S. industrial production index and Korea's foreign exchange reserves, and a negative relationship with the U.S. employment index and Chinese real estate index. The VKOSPI showed a positive relationship with the Chinese consumer price index, and a negative relationship with the U.S. interest rates, and Korean foreign exchange reserves. Next, dividing the analysis into two periods with the Covid crisis and the analysis by country, the impact of US macroeconomic variables on KOSPI was greater than Chinese ones and the impact of Chinese macroeconomic variables on VKOSPI was greater than US ones. The result of the forward predictive failure test confirmed that it was appropriate to divide the period into two periods with economic event, the Covid Crisis. After the Covid crisis, the impact of macroeconomic variables on KOSPI and VKOSPI increased. This reflects the financial market co-movements due to governments' policy coordination and central bank liquidity supply to overcome the crisis in the pandemic situation. Research implications or Originality - This study is meaningful in that it analyzed the effects of macroeconomic variables on KOSPI and VKOSPI simultaneously. In addition, the leverage effect can also be confirmed through the relationship between macroeconomic variables and KOSPI and VKOSPI. This article examined the fundamental changes in the Korean and global financial markets following the shock of Corona by applying this research model before and after Covid crisis.

Expiration-Day Effects: The Korean Evidence (주가지수 선물과 옵션의 만기일이 주식시장에 미치는 영향: 개별 종목 분석을 중심으로)

  • Choe, Hyuk;Eom, Yun-Sung
    • The Korean Journal of Financial Management
    • /
    • v.24 no.2
    • /
    • pp.41-79
    • /
    • 2007
  • This study examines the expiration-day effects of stock index futures and options in the Korean stock market. The so-called 'expiration-day effects', which are the abnormal stock price movements on derivatives expiration days, arise mainly from cash settlement. Index arbitragers have to bear the risk of their positions unless they liquidate their index stocks on the expiration day. If many arbitragers execute large buy or sell orders on the expiration day, abnormal trading volumes are likely to be observed. If a lot of arbitragers unwind positions in the same direction, temporary trading imbalances induce abnormal stock market volatility. By contrast, if some information arrives at market, the abnormal trading activity must be considered a normal process of price discovery. Stoll and Whaley(1987) investigated the aggregate price and volume effects of the S&P 500 index on the expiration day. In a related study, Stoll and Whaley(1990) found a similarity between the price behavior of stocks that are subject to program trading and of the stocks that are not. Thus far, there have been few studies about the expiration-day effects in the Korean stock market. While previous Korean studies use the KOSPI 200 index data, we analyze the price and trading volume behavior of individual stocks as well as the index. Analyzing individual stocks is important for two reasons. First, stock index is a market average. Consequently, it cannot reflect the behavior of many individual stocks. For example, if the expiration-day effects are mainly related to a specific group, it cannot be said that the expiration of derivatives itself destabilizes the stock market. Analyzing individual stocks enables us to investigate the scope of the expiration-day effects. Second, we can find the relationship between the firm characteristics and the expiration-day effects. For example, if the expiration-day effects exist in large stocks not belonging to the KOSPI 200 index, program trading may not be related to the expiration-day effects. The examination of individual stocks has led us to the cause of the expiration-day effects. Using the intraday data during the period May 3, 1996 through December 30, 2003, we first examine the price and volume effects of the KOSPI 200 and NON-KOSPI 200 index following the Stoll and Whaley(1987) methodology. We calculate the NON-KOSPI 200 index by using the returns and market capitalization of the KOSPI and KOSPI 200 index. In individual stocks, we divide KOSPI 200 stocks by size into three groups and match NON-KOSPI 200 stocks with KOSPI 200 stocks having the closest firm characteristics. We compare KOSPI 200 stocks with NON-KOSPI 200 stocks. To test whether the expiration-day effects are related to order imbalances or new information, we check price reversals on the next day. Finally, we perform a cross-sectional regression analysis to elaborate on the impact of the firm characteristics on price reversals. The main results seem to support the expiration-day effects, especially on stock index futures expiration days. The price behavior of stocks that are subject to program trading is shown to have price effects, abnormal return volatility, and large volumes during the last half hour of trading on the expiration day. Return reversals are also found in the KOSPI 200 index and stocks. However, there is no evidence of abnormal trading volume, or price reversals in the NON-KOSPI 200 index and stocks. The expiration-day effects are proportional to the size of stocks and the nearness to the settlement time. Since program trading is often said to be concentrated in high capitalization stocks, these results imply that the expiration-day effects seem to be associated with program trading and the settlement price determination procedure. In summary, the expiration-day effects in the Korean stock market do not exist in all stocks, but in large capitalization stocks belonging to the KOSPI 200 index. Additionally, the expiration-day effects in the Korean stock market are generally due, not to information, but to trading imbalances.

  • PDF

The Empirical Study of Variation of KOSPI Index & Macro Economic Variation (거시경제 변수 변화와 KOSPI 지수 변동의 연관성 분석)

  • An, Chang-Ho;Choi, Chang-Yeoul
    • International Commerce and Information Review
    • /
    • v.12 no.4
    • /
    • pp.171-192
    • /
    • 2010
  • In general, a stock index and its individual stocks are assumed to follow a random walk. A stock index is an important source of information and one that is seen by people everyday, regardless of their investment intentions. This paper examines the correlation between the KOSPI-the index that best reflects the Korean stock market and the macro - economic variables that have been found to influence the index by previous studies. The sample period considers the years after 2000 when the Korean stock market matured as restrictions on foreign investors were removed. For this purpose, a Vector Error Correction Model (VECM) and KOSPI equation with a general pacific approach were used. This paper aims at verifying the factors that determined the KOSPI after 2000 and at examining whether there was structural change in the investment environment. It also investigates changes in the factors determining the KOSPI's performance as a result of structural changes in the investment environment. The V AR (Vector Autoregressive) model including the nine variables was selected as a baseline model whose stability was tested using the unit root test. The results from the VECM and the structural changes in the investment environment can be summarized by the following Inner story points.

  • PDF

Does the Business Survey Index of the Federation of Korean Industries at the Service Industry Lead the domestic stock market ? (서비스 산업에서 전경련 BSI지수는 주식시장을 예측할 수 있는가?)

  • Kim, Joo Il;Kim, Byoung ryul
    • Journal of Service Research and Studies
    • /
    • v.6 no.3
    • /
    • pp.41-54
    • /
    • 2016
  • We examine the information transmission between the business survey index(BSI) based on the returns data offered by Federation of Korean Industries and KOSPI Index based on the returns data offered by Korea Bank. The data includes monthly return data from January 1998 to September 2015. The results of the analysis are as follows. Firstly, results of Granger Causality test suggests the existence of mutual causality KOSPI Index precede and have explanatory power BSI. Secondly, the results of impulse response function suggest that BSI Index show immediate response to KOSPI Index and are influenced by till time 4 From time 2 the impact gradually disappears. Also KOSPI Index show immediate response to BSI and are influenced by till time 4 From time 2 the impact gradually disappears. Lastly, the variance decomposition analysis showed a high influence of the KOSPI Index on the BSI and significant influence of the BSI on the KOSPI Index. This implies that returns on the KOSPI Index have a significant influence over returns on the BSI. The study is a further extension of existing studies on information transmission mechanism between the BSI and KOSPI. Finally, our results can be used as a guide by the Korea Bank and Republic of Korea and as well as Federation of Korean Industries.

An Empirical Study on Existence of Arbitrage Opportunities in the KOSPI 200 Futures Market (KOSPI 200 주가지수선물시장에서의 차익거래에 관한 실증연구)

  • Rhieu, Sang-Yup;Kim, Jae-Mahn
    • Korean Business Review
    • /
    • v.16
    • /
    • pp.145-168
    • /
    • 2003
  • This study is mainly aimed at analyzing the influence of the divergency(mispricing) between KOSPI 200 theoretical prices and its real prices of KOSPI 200 spot index, considering the existence of arbitrage opportunity from the mispricing. The data in this study are the daily prices of 1262 days, from 3 May 1996 to 14 December 2000. The results of our empirical study represent that the real prices in KOSPI 200 Stock Index Futures are continuously undervalued relative to their corresponding theoretical prices. Our study reconfirms the results from previous studies conducted at the domestic and overseas markets. We conclude that the undervaluation, especially in the market opening period, could come from fear of investors, whose experiences in the stock index futures market are limited, chiefly because of loss and uncertainty of prediction toward interest rates and dividends. Our study also represents that KOSPI 200 index shows more volatilities during days with mispricing relative to days without mispricing.

  • PDF

Investment Strategies for KOSPI200 Index Futures Using VKOSPI and Control Chart (변동성지수와 관리도를 이용한 KOSPI200 지수선물 투자전략)

  • Ryu, Jaepil;Shin, Hyun Joon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.237-243
    • /
    • 2012
  • This paper proposes quantitative investment strategies for KOSPI200 index futures using VKOSPI and control chart. Stochastic control chart is employed to decide when to take a position as well as what position out of long and short should be taken by monitoring whether VKOSPI or difference of VKOSPI touches the control limit lines. The strategies include 4 approaches, which are traditional control chart and 2-Area control chart coupled with VKOSPI and its difference, respectively. Computational experiments using real KOSPI200 futures index for recent 3 years are conducted to show the excellence of the proposed investment strategies under control chart framework.