• Title/Summary/Keyword: KOMPSAT-2 영상

Search Result 275, Processing Time 0.022 seconds

A Pansharpening Algorithm of KOMPSAT-3A Satellite Imagery by Using Dilated Residual Convolutional Neural Network (팽창된 잔차 합성곱신경망을 이용한 KOMPSAT-3A 위성영상의 융합 기법)

  • Choi, Hoseong;Seo, Doochun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.961-973
    • /
    • 2020
  • In this manuscript, a new pansharpening model based on Convolutional Neural Network (CNN) was developed. Dilated convolution, which is one of the representative convolution technologies in CNN, was applied to the model by making it deep and complex to improve the performance of the deep learning architecture. Based on the dilated convolution, the residual network is used to enhance the efficiency of training process. In addition, we consider the spatial correlation coefficient in the loss function with traditional L1 norm. We experimented with Dilated Residual Networks (DRNet), which is applied to the structure using only a panchromatic (PAN) image and using both a PAN and multispectral (MS) image. In the experiments using KOMPSAT-3A, DRNet using both a PAN and MS image tended to overfit the spectral characteristics, and DRNet using only a PAN image showed a spatial resolution improvement over existing CNN-based models.

Monitoring of the Drought in the Upstream Area of Soyang River, Inje-Gun, Kangwon-do Using KOMPSAT-2/3 Satellite (KOMPSAT-2/3 위성을 활용한 강원도 인제군 소양강 상류지역의 가뭄 모니터링)

  • Park, Sung-Jae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1319-1327
    • /
    • 2018
  • Korea has a terrain vulnerable to drought due to the concentration of precipitation in summer and the large amount of groundwater discharge. Quantified drought indices are used to determine these droughts. Among these, drought index is mainly used for analysis of precipitation, and recently, researches have been conducted to monitor drought using satellite images. In this study, we used the KOMPSAT-2/3 image to calculate the water surface area and compare with the drought index in order to monitor the drought in the Upper Soyang River. As a result, it was confirmed that the tendency of the water surface area change and the trend of the drought index were similar in the satellite images. Future research could be used as a basis for judging drought.

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

KOMPSAT-3A Urban Classification Using Machine Learning Algorithm - Focusing on Yang-jae in Seoul - (기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 -)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1567-1577
    • /
    • 2020
  • Urban land cover classification is role in urban planning and management. So, it's important to improve classification accuracy on urban location. In this paper, machine learning model, Support Vector Machine (SVM) and Artificial Neural Network (ANN) are proposed for urban land cover classification based on high resolution satellite imagery (KOMPSAT-3A). Satellite image was trained based on 25 m rectangle grid to create training data, and training models used for classifying test area. During the validation process, we presented confusion matrix for each result with 250 Ground Truth Points (GTP). Of the four SVM kernels and the two activation functions ANN, the SVM Polynomial kernel model had the highest accuracy of 86%. In the process of comparing the SVM and ANN using GTP, the SVM model was more effective than the ANN model for KOMPSAT-3A classification. Among the four classes (building, road, vegetation, and bare-soil), building class showed the lowest classification accuracy due to the shadow caused by the high rise building.

Definition and Monitoring of Image data Quality for KOMPSAT-3 from users (사용자 측면에서의 아리랑위성 3호 영상자료의 품질 정의 및 관리)

  • Lee, DongHan;Kim, Mina;Seo, DooChun;Jeong, JaeHeon;Jeon, KyeongMi
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2014
  • Generally there is a technical gap for the image data quality between from the satellite requirement values and from the users. After Cal/Val for KOMPSAT-3 had been done by Dec. 31, 2012, all requirements for KOMPSAT-3 image data quality have been validated, and then the normal operation of it started from Jan. 2013. In the normal period, the image data quality for the users has been defined and managed, and according to the result of it, the additional Cal/Val items have been doing. Cal/Val team and Processing team in KARI made the quality report (QR) for KOMPSAT-3 image data quality for the users, and have determined the quality level of KOMPSAT-3 product generated by Processing system (PMS; Product Management System) and managed the quality report for it. According to the result of the quality report, Cal/Val team defined six additional Cal/Val items, and has done five items of them and has been implementing the result of them into the Processing system.

Method for Restoring the Spatial Resolution of KOMPSAT-3A MIR Image (KOMPSAT-3A 중적외선 영상의 공간해상도 복원 기법)

  • Oh, Kwan-Young;Lee, Kwang-Jae;Jung, Hyung-Sup;Park, Sung-Hwan;Kim, Jeong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1391-1401
    • /
    • 2019
  • The KOMPSAT-3A is a high-resolution optical satellite launched in 2015 by Korea Aerospace Research Institute (KARI). KOMPSAT-3A provides Panchromatic (PAN-0.55 m), Multispectral (MS-2.2 m), and Mid-wavelength infrared (MIROR-5.5 m) image. However, due to security or military problems, MIROR image with 5.5m spatial resolution are provided down sampled at 33 m spatial resolution (MIRrd). In this study, we propose spatial sharpening method to improve the spatial resolution of MIRrd image (33 m) using virtual High Frequency (HF) image and optimal fusion factor. Using MS image and MIRrd image, we generated virtual high resolution (5.5 m) MIRORfus image and then compared them to actual high-resolution MIROR image. The test results show that the proposed method merges the spatial resolution of MS image and the spectral information of MIRrd image efficiently.

Analysis of Satellite Images to Estimate Forest Biomass (산림 바이오매스를 산정하기 위한 위성영상의 분석)

  • Lee, Hyun Jik;Ru, Ji Ho;Yu, Young Geol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.63-71
    • /
    • 2013
  • This study calculated vegetation indexes such as SR, NDVI, SAVI, and LAI to figure out correlations regarding vegetation by using high resolution KOMPSAT-2 images and LANDSAT images based on the forest biomass distribution map that utilized field survey data, satellite images and LiDAR data and then analyzed correlations between their values and forest biomass. The analysis results reveal that the vegetation indexes of high resolution KOMPSAT-2 images had higher correlations than those of LANDSAT images and that NDVI recorded high correlations among the vegetation indexes. In addition, the study analyzed the characteristics of hyperspectral images by using the COMIS of STSAT-3 and Hyperion images of a similar sensor, EO-1, and further the usability of biomass estimation in hyperspectral images by comparing vegetation index, which had relatively high correlations with biomass, with the vegetation indexes of LANDSAT with the same GSD conditions.

Epipolar Image Resampling from Kompsat-3 In-track Stereo Images (아리랑3호 스테레오 영상의 에피폴라 기하 분석 및 영상 리샘플링)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.455-461
    • /
    • 2013
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. The AEISS sensor of the Korean satellite provides 0.7m panchromatic and 2.8m multi-spectral images with 16.8km swath width from the sun-synchronous near-circular orbit of 685km altitude. Kompsat-3 is more advanced than Kompsat-2 and the improvements include better agility such as in-track stereo acquisition capability. This study investigated the characteristic of the epipolar curves of in-track Kompsat-3 stereo images. To this end we used the RPCs(Rational Polynomial Coefficients) to derive the epipolar curves over the entire image area and found out that the third order polynomial equation is required to model the curves. In addition, we could observe two different groups of curve patterns due to the dual CCDs of AEISS sensor. From the experiment we concluded that the third order polynomial-based RPCs update is required to minimize the sample direction image distortion. Finally we carried out the experiment on the epipolar resampling and the result showed the third order polynomial image transformation produced less than 0.7 pixels level of y-parallax.

Automatic Registration Between KOMPSAT-2 and TerraSAR-X Images (KOMPSAT-2 영상과 TerraSAR-X 영상 간 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Chae, Tae-Byeong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.667-675
    • /
    • 2011
  • In this paper, we propose an automatic image-to-image registration between high resolution multi-sensor images. To do this, TerraSAR-X image was shifted according to the initial translation differences of the x and y directions between images estimated using Mutual Information method. After that, the Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on the similarities of their locations and gradient orientations. For extracting large number of evenly distributed matching points, only one point within each regular grid constructed throughout the image was extracted to the final matching point pair. The model, which combined the piecewise linear function with the global affine transformation, was applied to increase the accuracy of the geometric correction, and the proposed method showed RMSE lower than 5m in all study sites.

Current Status of Application of KOMPSAT Series (최근 다목적실용위성 시리즈 활용 현황)

  • Lee, Kwang-Jae;Oh, Kwan-Young;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1485-1492
    • /
    • 2020
  • It has been more than 20 years since the launch of KOMPSAT-1, and so far, a total of 5 satellites have been successfully launched. Until now, KOMPSAT has been used in various fields, including the production of various thematic maps, land change, environmental analysis, and marine monitoring. Many researchers have conducted research to process, analyze, and utilize KOMPSAT images. According to the national space development plan, the KOMPSAT series will be continuously developed to meet the demand for satellite images at the national level. If the ultimate purpose of satellite development is to utilize acquired images, systematic research to effectively utilize the developed satellites should be followed. This special issue introduces the recently conducted research on the use of KOMPSAT images.