• Title/Summary/Keyword: KOMPSAT-2 영상

Search Result 277, Processing Time 0.022 seconds

An Experiment for Surface Reflectance Image Generation of KOMPSAT 3A Image Data by Open Source Implementation (오픈소스 기반 다목적실용위성 3A호 영상자료의 지표면 반사도 영상 제작 실험)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1327-1339
    • /
    • 2019
  • Surface reflectance obtained by absolute atmospheric correction from satellite images is useful for scientific land applications and analysis ready data (ARD). For Landsat and Sentinel-2 images, many types of radiometric processing methods have been developed, and these images are supported by most commercial and open-source software. However, in the case of KOMPSAT 3/3A images, there are currently no tools or open source resources for obtaining the reflectance at the top-of-atmosphere (TOA) and top-of-canopy (TOC). In this study, the atmospheric correction module of KOMPSAT 3/3A images is newly implemented to the optical calibration algorithm supported in the Orfeo ToolBox (OTB), a remote sensing open-source tool. This module contains the sensor model and spectral response data of KOMPSAT 3A. Aerosol measurement properties, such as AERONET data, can be used to generate TOC reflectance image. Using this module, an experiment was conducted, and the reflection products for TOA and TOC with and without AERONET data were obtained. This approach can be used for building the ARD database for surface reflection by absolute atmospheric correction derived from KOMPSAT 3/3A satellite images.

Geometric Accuracy of KOMPSAT-2 PAN Data According to Sensor Modeling (센서모델링 특성에 따른 KOMPSAT-2 PAN 영상의 정확도)

  • Seo, Doo-Chun;Yang, Ji-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 2009
  • In order to help general users to analyze the KOMPSAT-2 data, an application of sensor modeling to commercial software was explained in this document. The sensor modeling is a basic step to extract the quantity and quality information from KOMPSAT-2 data. First, we introduced the contents and type of ancillary data offered with KOMPSAT-2 PAN image data, and explained how to use it with commercial software. And then, we applied the polynomial-base and refine RFM sensor modeling with ground control points. In the polynomial-base sensor modeling, the accuracy which is average RMSE of check points is highest when the satellite position was calculated by type of 1st order function and the satellite attitude was calculated by type of 1st order function for (Y axis), (Z axis) or constant for (X axis), (Y axis), (Z axis) in perspective center position and satellite attitude parameters. As a result of refine RFM sensor modeling, the accuracy is less than 1 pixel when we applied affine model..

  • PDF

Analysis of KOMPSAT-5 Orbit for Radargrammetry at Different Latitudes (Radargrammetry 적용을 위한 위도에 따른 KOMPSAT-5 궤도 분석)

  • Jang, So-Young;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.63-66
    • /
    • 2008
  • 2010년 5월에 발사 예정인 KOMPSAT-5(KOrea Multi-Purpose SATellite-5)는 KOMPSAT-1, 2호에 탑재된 광학센서와는 달리 기상상태와 태양고도에 제약을 받지 않고 자료 획득이 가능한 SAR 시스템이 탑재된다. 본 연구에서는 KOMPSAT-5의 SAR 시스템으로부터 radargrammetry 기법을 적용하기 위해 위성의 궤도와 영상 모드를 분석하였다. Radargrammetry 적용을 위한 SAR 영상 pair의 parallax의 height sensitivity를 이론상으로 계산하였다. 그리고 STK 소프트웨어를 사용하여 대전과 남극 세종기지에서의 최적 조건을 각각 예시하였다. 입사각이 20$^{\cric}$-45$^{\cric}$가 되는 nominal mode의 descending pass만을 사용하여 height sensitivity가 0.5-0.75 사이의 영상 조합을 찾았다. 그 결과 Pass Number 쌍으로서, 대전은 5-4, 7-5, 8-5의 영상 조합을 하였을 때 radargrammetry 적용이 용이하고, 남극 세종기지는 8-6, 9-7, 10-7, 11-8, 12-8, 13-9, 14-9, 15-9, 15-10, 15-11의 영상 조합을 하였을 때 radargrammetry 적용이 가능한 것으로 예측되었다.

  • PDF

Estimating Carbon Sequestration in Forest using KOMPSAT-2 Imagery (KOMPSAT-2 영상을 이용한 산림의 이산화탄소 흡수량 추정)

  • Kim, So-ra;Lee, Woo-kyun;Kwak, Han-bin;Choi, Sung-ho
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.324-330
    • /
    • 2009
  • The objective of this study is to estimate the carbon sequestration in forest stands using KOMPSAT-2 imagery. For estimating the amount of carbon sequestration, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated by the crown width extracted from KOMPSAT-2 imagery. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the Intergovernmental Panel on Climate Change (IPCC) guideline, was used to convert the stand biomass into the amount of carbon sequestration. Thereafter, the KOMPSAT-2 imagery was classified with the segment based classification (SBC) method in order to quantify carbon sequestration by tree species. This approach, estimating the amount of carbon sequestration for certain species in stand, can be available to extend plot-based carbon sequestration to stand-based carbon sequestration.

Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery (KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류)

  • Kim, Sang-Il;Kim, Hyun-Cheol;Shin, Jung-Il;Hong, Soon-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2013
  • Baton Peninsula, where Sejong station is located, mainly covered with snow and vegetation. Because this area is sensitive to climate change, monitoring of surface variation is important to understand climate change on the polar region. Due to the inaccessibility, the remote sensing is useful to continuously monitor the area. The objectives of this research are 1) map classification of land-cover types in the Barton Peninsular around King Sejong station and 2) grasp distribution of vegetation species in classified area. A KOMPSAT-2 multispectral satellite image was used to classify land-cover types and vegetation species. We performed classification with hierarchical procedure using KOMPSAT-2 satellite image and ground reference data, and the result is evaluated for accuracy as well. As the results, vegetation and non-vegetation were clearly classified although species shown lower accuracies within vegetation class.

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data (RadCalNet 자료를 이용한 다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.167-178
    • /
    • 2020
  • KOMPSAT-3A images have been used in various kinds of applications, since its launch in 2015. However, there were limits to scientific analysis and application extensions of these data, such as vegetation index estimation, because no tool was developed to obtain the surface reflectance required for analysis of the actual land environment. The surface reflectance is a product of performing an absolute atmospheric correction or calibration. The objective of this study is to quantitatively verify the accuracy of top-of-atmosphere reflectance and surface reflectance of KOMPSAT-3A images produced from the OTB open-source extension program, performing the cross-validation with those provided by a site measurement data of RadCalNet, an international Calibration/Validation (Cal/Val) portal. Besides, surface reflectance was obtained from Landsat-8 OLI images in the same site and applied together to the cross-validation process. According to the experiment, it is proven that the top-of-atmosphere reflectance of KOMPSAT-3A images differs by up to ± 0.02 in the range of 0.00 to 1.00 compared to the mean value of the RadCalNet data corresponding to the same spectral band. Surface reflectance in KOMPSAT-3A images also showed a high degree of consistency with RadCalNet data representing the difference of 0.02 to 0.04. These results are expected to be applicable to generate the value-added products of KOMPSAT-3A images as analysisready data (ARD). The tools applied in thisstudy and the research scheme can be extended as the new implementation of each sensor model to new types of multispectral images of compact advanced satellites (CAS) for land, agriculture, and forestry and the verification method, respectively.

Characterizing Overlap Area of KOMPSAT-3 (다목적실용위성 3호 Overlap 영역의 특성분석)

  • Seo, Doo-Chun;Kim, Hee-Seob
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.154-162
    • /
    • 2011
  • The KOrea Multi-Purpose Satellite-3 (KOMPSAT-3) provides 0.7 m Ground Sample Distance (GSD) panchromatic image and 2.8 m GSD multi-spectral image data for various applications. The KOMPSAT-3 system data will be applied in the field of earth observations, covering land, sea, coastal zones, and Geographic Information Systems (GIS). In order to keep the swath width of 15km at nadir view of KOMPSAT-3, CCD consist of approximately 24,020 pixels excluding 20 dark pixels at both sides and has overlap region. Because there are no CCD-line sensors with a pixel size of $7{\mu}m$, the field of view is separated into 2 parts and imaged on 2 detectors, each with 12,080 pixels. Therefore, 2 detectors have different geometric characteristic. This paper provides image simulation for geometric characteristics analysis of overlapping area of KOMPSAT-3 using KOMPSAT-2 image data.

Operational Ship Monitoring Based on Integrated Analysis of KOMPSAT-5 SAR and AIS Data (Kompsat-5 SAR와 AIS 자료 통합분석 기반 운영레벨 선박탐지 모니터링)

  • Kim, Sang-wan;Kim, Dong-Han;Lee, Yoon-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.327-338
    • /
    • 2018
  • The possibility of ship detection monitoring at operational level using KOMPSAT-5 Synthetic Aperture Radar (SAR) and Automatic Identification System (AIS) data is investigated. For the analysis, the KOMPSAT-5 SLC images, which are collected from the west coast of Shinjin port and the northern coast of Jeju port are used along with portable AIS data from near the coast. The ship detection algorithm based on HVAS (Human Visual Attention System) was applied, which has significant advantages in terms of detection speed and accuracy compared to the commonly used CFAR (Constant False Alarm Rate). As a result of the integrated analysis, the ship detection from KOMPSAT-5 and AIS were generally consistent except for small vessels. Some ships detected in KOMPSAT-5 but not in AIS are due to the data absence from AIS, while it is clearly visible in KOMPSAT-5. Meanwhile, SAR imagery also has some false alarms due to ship wakes, ghost effect, and DEM error (or satellite orbit error) during object masking in land. Improving the developed ship detection algorithm and collecting reliable AIS data will contribute for building wide integrated surveillance system of marine territory at operational level.

Extraction of Agricultural Land Use and Vegetation Information using KOMPSAT-3 Resolution Satellite Images (KOMPSAT-3급 위성영상을 이용한 농업 토지이용 및 식생 정보 추출)

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jong-Hwa;Shin, Hyung-Jin;Jung, In-Kyun;Jung, Chul-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.31-34
    • /
    • 2009
  • 본 연구에서는 KOMPSAT-3급 고해상도 위성영상을 이용하여 전처리 후 정밀 농업 주제정보를 추출하는 방법론을 제시하고자 하였다. 분석에 사용한 KOMPSAT-3급 고해상도 위성영상은 IKONOS (2001/5/25, 2001/12/25, 2003/10/23) 3개의 영상, QuickBird (2006/5/1, 2004/11/17) 2개의 영상, KOMPSAT-2 (2007/9/17) 1개의 영상 등 모두 6개의 영상을 확보 및 각각에 대한 현장 GCP자료 및 RPC, RPB 자료를 수집하여 정사보정을 실시하였다. RMSE는 약 $0.12\sim3.18$의 값으로 분포되었다. KOMPSAT근 급 영상자료로 부터 정밀농업물재배지도를 작성하기 위해 각 벤드별 Scatter기법을 이용하여 각 밴드간의 상간관계를 살펴보고, 3개의 최적의 밴드를 선정하였다. 또한 작물별 최적의 밴드 결정을 위해 각 밴드별 픽셀 값을 사용하여 Texture 분석을 실시하였다. 그 결과 논의 경우 모든 밴드에서 분석이 용이 한 것으로 분석되었으며, 4밴드의 경우 3개의 작물(고추, 옥수수, 벼)의 분석시 매우 적합한 밴드인 것으로 분석되었다. 각 영상별 필터링 기법과, ISODATA 방법을 이용한 정밀농업 토지이용도 작성하여 기존 스크린 디지타이징 기법으로 작성한 정밀토지이용도와 비교하였다. 다양한 식생정보를 추출하는 위하여 확보된 영상자료로부터 RVI, NDVI, ARVI, SAVI 식생지수 를 추출하였으며, 그 결과를 현장자료로부터 추출한 식생지수간의 결과 값과 비교분석하였다.

  • PDF

Detecting Land Cover Change in an Urban Area by Image Differencing and Image Ratioing Techniques (영상의 차연산과 비연산 기법에 의한 도시지역의 토지피복 변화탐지)

  • Lee, Jin-Duk;Jo, Chang-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.43-52
    • /
    • 2004
  • This study presents the application of aerial photographs and the Korea Multi-Purpose Satellite, KOMPSAT-1 Electro-Optical Camera(EOC) imagery in detecting change in an urban area that has been rapidly growing. For the study, we used multi-temporal images which were acquired by two different sensors. Image registration and resampling were rallied out before performing change detection in a common reference system with the same spatial resolution. for all of the images. Results from image differencing and image ratioing techniques show that panchromatic aerial photographs and KOMPSAT-1 EOC images collected by different sensors have potential to detect changes of urban features such as building, road and other man-made structure. And the optimal threshold values were suggested in applying image differencing and image ratioing techniques for change detection.

  • PDF