The detection of sandstorms and industrial pollutants has been the emphasis of this study. Data obtained from meteorological satellites, NOAA and GMS, have been used for detailed analysis. MODIS and Landsat images are also used for the application of future KOMPSAT- 2. Verification of satellite observations has been made with air pollution data obtained by ground-level monitors. It was found that satellite measurements agree well with concentrations and variations of air pollutants measured on the ground, and that satellite technique is a very useful device for monitoring large-scale air pollution in East Asia. The quantitative analysis of satellite image data on air pollution is the goal in the future studies.
For the last 14 years, space-borne satellite SAR system such as RADARSAT-1, ERS-2, and ENVISAT ASAR have provided a continuous observation over the ocean. However, the data acquired from those systems were limited to C-band frequency until the advent of the first spacebome German X-band SAR system TerraSAR-X in 2007. Korea is also planning to launch the nation's first X-band SAR satellite (KOMPSAT-5) in 2010. It is timely and necessary to develop X-band models for estimating geophysical parameters from these X-band SAR systems. In this study, X-band wind retrieval model was investigated and developed based on numerical ocean scattering model (radar backscattering model and hydrodynamic interaction model). Although these models have not yet been tested and validated for broad ranges of wind conditions, the estimated wind speeds from TerraSAR-X data show generally good agreement with in-situ measurements.
이 논문에서는 대기 굴절이 다목적 실용 위성 영상과 같은 고해상도 영상의 기하학적 성 질에 미치는 영향이 연구되었다. 대기 굴절 모델이 유도 되었고, 기준 대기 모델을 사용하여 영상 의 기하학적 오차를 시뮬레이션을 통하여 구하였다. 표준 대기 중에서 최대 약 7m (1 pixel의 크 기)의 오차가 대기 굴절에 의해 발생하며 이상 대기 상에서는 더 큰 오차를 일으킬 수도 있을 것 이다.
대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
/
pp.355-362
/
1999
With the ready access to the high resolution satellite image data, users of and areas covered by satellite image data are constantly on the rise world-wide. Korea will also be able to take full advantage of the satellite data once the KOMPSAT is successfully launched. Harmonizing satellite data production and application technology and users' needs, along with the guiding policy is essential for promoting satellite data use. Up to now, the Korean government has mainly concentrated on developing production technology for the satellite units. However, the imminent task of independent satellite data production demands a promotion policy for satellite data use. In this context, the policy is defined as an important medium for identifying the role and status of satellite image information at the national level and also Preparing the legal as well as systematic foundation for producing, building, distributing, and packaging satellite data. For example, in the countries with the advanced satellite technology, such as the United States, the United Kingdom, and Australia, digital ortho image and digital elevation model (DEM) are mandatorily included in the National Geographic Framework Data through policy measures. In addition, in order for the efficient provision of the satellite data, separate organization or agency is being in operation for the exclusive production and distribution of the satellite data. The present paper aims to examine the role and status of the satellite data as well as their current status and problems in Korea in reference to the National Spatial Data Infrastructure, and finally to provide the policy directions to promote the satellite data use in public sector on the basis of the preceding analyses.
대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
/
pp.313-318
/
1998
Electro-Optical Camera(EOC) is the main payload of Korea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including Digital Terrain Elevation Map(DTEM). This instrument which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510 ~ 730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable rain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the EOC data users. The modulation transfer function of EOC was measured as greater than 16% at Nyquist frequency over the entire field of view which exceeds its requirement of larger than 10%, The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.
본 연구는 토지피복 분류에 사용 가능한 ROI 생성 과정에서 기계학습 기반 교차검증을 활용하였다. 연구지역은 세종시를 포함한 2019년 10월 28일 단시기 KOMPSAT-3A 영상을 활용하였다. 연구 과정에서 4개의 밴드(Red, Green, Blue, Near Infra-red)를 독립변수로 교차검증 과정에서 학습시켰다. 또한 SVM의 4가지 기법(Linear, Polynomial, RBF, Sigmoid)을 활용하여 추출된 ROI를 기반으로 토지피복 분류를 실시하였다. 교차검증 과정에서 훈련된 3,500개의 데이터 중 1,813개의 데이터가 추출되었으며 건물, 도로, 그리고 초지에서 약 60%의 데이터가 제거되었다. 추출된 ROI를 기반으로 다른 SVM기법에 비해 SVM Linear 기법이 91.77%로 가장 높은 분류 정확도를 나타냈다. 분류 클래스 중 초지의 경우 산림과의 오분류가 가장 많이 발생하며 79.43%의 생산자 정확도로 가장 낮은 분류 정확도를 보여주었다. 연구 결과에 따라 교차검증에서 추출된 ROI는 산림, 수역, 그리고 농업지역에 대해서는 90%이상의 분류정확도를 보여주며 효과적인 분류결과를 도출할 수 있었으나, 80%의 분류정확도를 보여주는 건물, 도로, 나대지, 그리고 초지 지역을 분류하는 방법에 대해서는 추가적인 연구가 진행되어야 할 필요성이 존재한다.
위성 원격탐사 기법은 산림 모니터링에 적극적으로 활용될 수 있으며 우리나라 독자 운영 위성인 다목적실용위성을 활용하였을 때 특히 의미 깊다. 최근 들어 위성 원격탐사 자료에 머신러닝 기법을 적용함으로써 산림 모니터링을 수행하는 연구가 다수 이루어지고 있다. 머신러닝 기법을 통하여 제작된 산림모니터링 정보는 기존 산림 모니터링 방법의 효율성을 향상시키는 데에 활용할 수 있다. 머신러닝 기법의 경우 관심 지역과 활용 데이터의 특징에 따라 분류 정확도가 크게 달라지므로 다양한 모델을 적용함으로써 가장 효과적인 분류 결과를 도출하는 것이 매우 중요하다. 본 연구에서는 우리나라 삼척 지역에 대해 심층신경망을 적용함으로써 인공림과 자연림의 분류 성능을 확인하였다. 그 결과 픽셀 정확도가 약 0.857, F1 Score가 자연림과 인공림에 대해 각각 약 0.917과 0.433로 확인되었다. F1 score를 보았을 때 인공림의 분류 성능이 절대적으로는 낮은 수준을 나타냈다. 하지만 기존의 인공림과 자연림 분류 성능에 대해 F1 score를 기준으로 약 0.06, 그리고 0.10 향상된 성능을 확인할 수 있었다. 이러한 결과를 바탕으로 볼 때에 합성곱신경망 기반의 추가적인 모델을 적용함으로써 보다 적절한 모델을 분석할 필요가 있다.
천리안위성2A호 기상탑재체 AMI(Advanced Meteorological Imager) 센서 검출기의 최상의 요소들로 구성된 Best Detector Select (BDS) 맵은 발사 전 확정되어 AMI에 업로드 되어 있다. 위성 발사 이후 급격한 온도 변화 환경에 노출되면 검출기의 성능에 변화가 생길 수 있으며, 발사 및 탑재체 아웃개싱 이후에 BDS맵의 성능을 다시 분석하고 필요시 업데이트가 필요하다. 검출기 요소 전체에 대한 성능을 검증하기 위한 분석 작업이 탑재체 개발업체(미 L3HARRIS사)가 제공한 BDS맵 분석 기술 문서를 기반으로 진행되었다. BDS맵 분석이란 탑재체 검출기가 기준 목표물(심우주와 탑재체 내부 보정 타겟)을 응시하는 동안 얼마나 안정적인 신호를 보이는 지를 평가하는 것이다. 이러한 목적으로 LTS(Long Time Series) 및 V-V(Output Voltage vs. Bias Voltage)라 부르는 검증법이 이용된다. LTS는 30초 동안, V-V는 2초 동안 목표물을 응시하고 이 때의 검출기 노이즈 성분을 계산한다. 자료를 획득하기 위해서는 탑재체의 운영을 멈추고 특별 관측을 실시하여야 하기 때문에, 정상 운영 전인 궤도상 시험기간 중에 해당 작업이 이루어지게 된다. 천리안위성2A호 기상탑재체 궤도상 시험 기간 동안 획득한 자료를 바탕으로 BDS맵의 상태를 평가하였다. 발사 전 지상 시험에서 평가된 BDS맵의 전체 성분들 중에 약 1%에 해당하는 요소들이 성능 변화를 보였으며, 이를 다른 요소들 중 최상의 성능을 보이는 성분으로 교체하였다. 새로운 BDS맵을 적용한 결과 BDS문제로 인해 야기된 기상탑재체 원시영상에 나타나는 노이즈 성분(줄무늬)이 완전하게 제거되었다.
다목적실용위성 5호는 국내 최초로 영상레이더(SAR)가 탑재된 지구관측위성이다. SAR 영상은 위성에 부착된 안테나로부터 방사된 마이크로파가 물체로부터 반사된 신호를 수신하여 생성된다. SAR는 대기 중의 입자의 크기에 비해 파장이 긴 마이크로파를 사용하기 때문에 구름이나 안개 등을 투과할 수 있으며, 주야간 구분 없이 고해상도의 영상을 얻을 수 있다. 하지만, SAR 영상에는 색상 정보가 부재하는 제한점이 존재한다. 이러한 SAR 영상의 제한점을 극복하기 위해, 도메인 변환을 위해 개발된 딥러닝 모델인 Cycle GAN을 활용하여 SAR 영상에 색상을 대입하는 연구를 수행하였다. Cycle GAN은 unpaired 데이터셋 기반의 무감독 학습으로 인해 학습이 불안정하다. 따라서 Cycle GAN의 학습 불안정성을 해소하고, 색상 구현의 성능을 향상하기 위해 다중 크기 식별자를 적용한 MS Cycle GAN을 제안하였다. MS Cycle GAN과 Cycle GAN의 색상 구현 성능을 비교하기 위하여 두 모델이 Florida 데이터셋을 학습하여 생성한 영상을 정성적 및 정량적으로 비교하였다. 다양한 크기의 식별자가 도입된 MS Cycle GAN은 기존의 Cycle GAN과 비교하여 학습 결과에서 생성자 및 식별자 손실이 대폭 감소되었고, 나뭇잎, 강, 토지 등의 영역 특성에 부합하는 색상이 구현되는 것을 확인하였다.
본 논문에서는 원격 탐사 영상에 대한 특징 기반 영상 정합 (Image Registration) 방법의 고속화를 위한 딥러닝 기반 특징점 필터링 방법인 DLKF (Deep Learning Keypoint Filtering)를 제안한다. 기존의 특징 기반 영상 정합 방법의 복잡도는 특징 매칭 (Feature Matching) 단계에서 발생한다. 이 복잡도를 줄이기 위하여 본 논문에서는 특징 매칭이 영상의 구조물에서 검출된 특징점으로 매칭되는 것을 확인하여 특징점 검출기에서 검출된 특징점 중에서 구조물에서 검출된 특징점만 필터링하는 방법을 제안한다. DLKF는 영상 정합을 위하여 필수적인 특징점을 잃지 않으면서 그 수를 줄이기 위하여 구조물의 경계와 인접한 특징점을 보존하고, 서브 샘플링 (Subsampling)된 영상을 사용한다. 또한 영상 분할 (Image Segmentation) 방법을 위해 패치 단위로 잘라낸 영상을 다시 합칠 때 생기는 영상 패치 경계의 잡음을 제거하기 위하여 영상 패치를 중복하여 잘라낸다. DLKF의 성능을 검증하기 위하여 아리랑 3호 위성 원격 탐사 영상을 사용하여 기존 특징점 검출 방법과 속도와 정확도를 비교하였다. SIFT 기반 정합 방법을 기준으로 SURF 기반 정합 방법은 특징점의 수를 약 18% 감소시키고 속도를 약 2.6배 향상시켰지만 정확도가 3.42에서 5.43으로 저하되었다. 제안하는 방법인 DLKF를 사용하였을 때 특징점의 수를 약 82% 감소시키고 속도를 약 20.5배 향상시키면서 정확도는 4.51로 저하되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.