• Title/Summary/Keyword: KOMPSAT

Search Result 1,079, Processing Time 0.027 seconds

Bias Characteristics Analysis of Himawari-8/AHI Clear Sky Radiance Using KMA NWP Global Model (기상청 전구 수치예보모델을 활용한 Himawari-8/AHI 청천복사휘도 편차 특성 분석)

  • Kim, Boram;Shin, Inchul;Chung, Chu-Yong;Cheong, Seonghoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1101-1117
    • /
    • 2018
  • The clear sky radiance (CSR) is one of the baseline products of the Himawari-8 which was launched on October, 2014. The CSR contributes to numerical weather prediction (NWP) accuracy through the data assimilation; especially water vapor channel CSR has good impact on the forecast in high level atmosphere. The focus of this study is the quality analysis of the CSR of the Himawari-8 geostationary satellite. We used the operational CSR (or clear sky brightness temperature) products in JMA (Japan Meteorological Agency) as observation data; for a background field, we employed the CSR simulated using the Radiative Transfer for TOVS (RTTOV) with the atmospheric state from the global model of KMA (Korea Meteorological Administration). We investigated data characteristics and analyzed observation minus background statistics of each channel with respect to regional and seasonal variability. Overall results for the analysis period showed that the water vapor channels (6.2, 6.9, and $7.3{\mu}m$) had a positive mean bias where as the window channels(10.4, 11.2, and $12.4{\mu}m$) had a negative mean bias. The magnitude of biases and Uncertainty result varied with the regional and the seasonal conditions, thus these should be taken into account when using CSR data. This study is helpful for the pre-processing of Himawari-8/Advanced Himawari Imager (AHI) CSR data assimilation. Furthermore, this study also can contribute to preparing for the utilization of products from the Geo-Kompsat-2A (GK-2A), which will be launched in 2018 by the National Meteorological Satellite Center (NMSC) of KMA.

Research on Analytical Technique for Satellite Observstion of the Arctic Sea Ice (극지 해빙 위성관측을 위한 분석 기술 개발)

  • Kim, Hyun-cheol;Han, Hyangsun;Hyun, Chang-Uk;Chi, Junhwa;Son, Young-sun;Lee, Sungjae
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1283-1298
    • /
    • 2018
  • KOPRI(Korea Polar Research Institute) have researhed Arctic sea ice by using satellite remote sensing data since 2017 as a mission of KOPRI. The title of the reseach is "Development of Satellite Observation and Analysis for Arctc sea-ice". This project has three major aims; 1) development of prototype satellite data archive/manage system for Arctic sea ice monitoring, 2) development of sea ice remote sensing data processing and analysis technique, and 3) development of international satellite observing network for Arcitc. This reseach will give us that 1) deveolpment of sea ice observing system for northern sea route, 2) development of optimal remote sensing data processing technique for sea ice and selected satelite sensors, 3) development of international satellite onbservation network. I hope that this letter of introducton KOPRI satellite program for Arctic will help to understand Arctic remote sensing and will introduce you to step into the Arctic remote sensing, which Iis like a blue ocean of remote sensing.

U.S. Commercial Remote Sensing Regulatory Reform Policy (미국의 상업적 원격탐사활동에 대한 규제개혁 정책)

  • Kwon, Heeseok;Lee, Jinho;Lee, Eunjung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.241-250
    • /
    • 2019
  • The current U.S. remote sensing act was made in 1992 and has been criticized for being outdated and inappropriate in view of the modern technological development. In order to enhance the American competitiveness and leadership in the world, President Trump announced Space Policy Directive (SPD) - 2 on May 24, which is designed to modernize the regulations related to commercial space activities including private remote sensing system operations. It should be noted that the regulatory reform efforts are made within broader terms of the National Security Strategy on Dec. 17, 2017, pursuing the enhancement of national security and economic prosperity as well. A legislative support in Congress has also been added to the Administration's efforts. The proposed regulatory reform on the licensing of commercial remote sensing system operations outlines the features of lessening administrative burden on applicants by simplifying the overall application process and of limiting the operations only when there is an impact upon the national security with clear and convincing evidence. But, due to a different regulatory system of each country, such a movement to expand an individual's freedom to explore and utilize outer space may result in an international dispute or a violation of international obligations, so there should be a merit in paying attention to the U.S. commercial remote sensing regulatory reform, and it is desirable to establish international norms as flexible and appropriate to the level of space technology and space industry.

Deep Learning-based Keypoint Filtering for Remote Sensing Image Registration (원격 탐사 영상 정합을 위한 딥러닝 기반 특징점 필터링)

  • Sung, Jun-Young;Lee, Woo-Ju;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.26-38
    • /
    • 2021
  • In this paper, DLKF (Deep Learning Keypoint Filtering), the deep learning-based keypoint filtering method for the rapidization of the image registration method for remote sensing images is proposed. The complexity of the conventional feature-based image registration method arises during the feature matching step. To reduce this complexity, this paper proposes to filter only the keypoints detected in the artificial structure among the keypoints detected in the keypoint detector by ensuring that the feature matching is matched with the keypoints detected in the artificial structure of the image. For reducing the number of keypoints points as preserving essential keypoints, we preserve keypoints adjacent to the boundaries of the artificial structure, and use reduced images, and crop image patches overlapping to eliminate noise from the patch boundary as a result of the image segmentation method. the proposed method improves the speed and accuracy of registration. To verify the performance of DLKF, the speed and accuracy of the conventional keypoints extraction method were compared using the remote sensing image of KOMPSAT-3 satellite. Based on the SIFT-based registration method, which is commonly used in households, the SURF-based registration method, which improved the speed of the SIFT method, improved the speed by 2.6 times while reducing the number of keypoints by about 18%, but the accuracy decreased from 3.42 to 5.43. Became. However, when the proposed method, DLKF, was used, the number of keypoints was reduced by about 82%, improving the speed by about 20.5 times, while reducing the accuracy to 4.51.

A Study to Improve the Classification Accuracy of Mosaic Image over Korean Peninsula: Using PCA and RGB Indices (한반도 모자이크 영상의 분류 정확도 향상 기법 연구: PCA 기법과 RGB 지수를 활용하여)

  • Moon, Jiyoon;Lee, Kwangjae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1945-1953
    • /
    • 2022
  • Korea Aerospace Research Institute produces mosaic images of the Korean Peninsula every year to promote the use of satellite images and provides them to users in the public sector. However, since the pan-sharpening and color balancing methodologies are applied during the mosaic image processing, the original spectral information is distorted. In addition, there is a limit to analyze using mosaic images as mosaic images provide only Red, Green and Blue bands excluding Near Infrared (NIR) band. Therefore, in order to compensate for these limitations, this study applied the Principal Component Analysis (PCA) technique and indices extracted from R, G, B bands together for image classification and compared the classification results. As a result of the analysis, the accuracy of the mosaic image classification result was about 67.51%, while the accuracy of the image classification result using both PCA and RGB indices was about 75.86%, confirming that the accuracy of the image classification result can be improved. As a result of comparing the PCA and the RGB indices, the accuracy of the image classification result was about 64.10% and 74.05% respectively. Through this, it was confirmed that the classification accuracy using the RGB indices was higher among the two techniques, and implications were derived that it was important to use high quality reference or supplementary data. In the future, additional indices and techniques are needed to improve the classification and analysis results of mosaic images, and related research is expected to increase the utilization of images that provide only R, G, B or limited spectral information.

Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning (기상모델자료와 기계학습을 이용한 GK-2A/AMI Hourly AOD 산출물의 결측화소 복원)

  • Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.953-966
    • /
    • 2022
  • Since aerosols adversely affect human health, such as deteriorating air quality, quantitative observation of the distribution and characteristics of aerosols is essential. Recently, satellite-based Aerosol Optical Depth (AOD) data is used in various studies as periodic and quantitative information acquisition means on the global scale, but optical sensor-based satellite AOD images are missing in some areas with cloud conditions. In this study, we produced gap-free GeoKompsat 2A (GK-2A) Advanced Meteorological Imager (AMI) AOD hourly images after generating a Random Forest based gap-filling model using grid meteorological and geographic elements as input variables. The accuracy of the model is Mean Bias Error (MBE) of -0.002 and Root Mean Square Error (RMSE) of 0.145, which is higher than the target accuracy of the original data and considering that the target object is an atmospheric variable with Correlation Coefficient (CC) of 0.714, it is a model with sufficient explanatory power. The high temporal resolution of geostationary satellites is suitable for diurnal variation observation and is an important model for other research such as input for atmospheric correction, estimation of ground PM, analysis of small fires or pollutants.

Enhancing GEMS Surface Reflectance in Snow-Covered Regions through Combined of GeoKompsat-2A/2B Data (천리안 위성자료 융합을 통한 적설역에서의 GEMS 지표면 반사도 개선 연구)

  • Suyoung Sim;Daeseong Jung;Jongho Woo;Nayeon Kim;Sungwoo Park;Hyunkee Hong;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1497-1503
    • /
    • 2023
  • To address challenges in classifying clouds and snow cover when calculating ground reflectance in Near-UltraViolet (UV) wavelengths, this study introduces a methodology that combines cloud data from the Geostationary Environmental Monitoring Spectrometer (GEMS) and the Advanced Meteorological Imager (AMI)satellites for snow cover analysis. The proposed approach aims to enhance the quality of surface reflectance calculations, and combined cloud data were generated by integrating GEMS cloud data with AMI cloud detection data. When applied to compute GEMS surface reflectance, this fusion approach significantly mitigated underestimation issues compared to using only GEMS cloud data in snow-covered regions, resulting in an approximately 17% improvement across the entire observational area. The findings of this study highlight the potential to address persistent underestimation challenges in snow areas by employing fused cloud data, consequently enhancing the accuracy of other Level-2 products based on improved surface reflectivity.

Improvement of GOCI-II Ground System for Monitoring of Level-1 Data Quality (천리안 해양위성 2호 Level-1 영상의 품질관리를 위한 지상국 시스템 개선)

  • Sun-Ju Lee;Kum-Hui Oh;Gm-Sil Kang;Woo-Chang Choi;Jong-Kuk Choi;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1529-1539
    • /
    • 2023
  • The data from Geostationary Ocean Color Imager-II (GOCI-II), which observes the color of the sea to monitor marine environments, undergoes various correction processes in the ground station system, producing data from Raw to Level-2 (L2). Quality issues arising at each processing stage accumulate step by step, leading to an amplification of errors in the satellite data. To address this, improvements were made to the GOCI-II ground station system to measure potential optical quality and geolocation accuracy errors in the Level-1A/B (L1A/B) data. A newly established Radiometric and Geometric Performance Assessment Module (RGPAM) now measures five optical quality factors and four geolocation accuracy factors in near real-time. Testing with GOCI-II data has shown that RGPAM's functions, including data processing, display and download of measurement results, work well. The performance metrics obtained through RGPAM are expected to serve as foundational data for real-time radiometric correction model enhancements, assessment of L1 data quality consistency, and the development of reprocessing strategies to address identified issues related to the GOCI-II detector's sensitivity degradation.

A Quick-and-dirty Method for Detection of Ground Moving Targets in Single-Channel SAR Single-Look Complex (SLC) Images by Differentiation (미분을 이용한 단일채널 SAR SLC 영상 내 지상 이동물체의 탐지방법)

  • Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.185-205
    • /
    • 2014
  • SAR ground moving target indicator (GMTI) has long been an important issue for SAR advanced applications. As spatial resolution of space-borne SAR system has been significantly improved recently, the GMTI becomes a very useful tool. Various GMTI techniques have been developed particularly using multi-channel SAR systems. It is, however, still problematic to detect ground moving targets within single channel SAR images while it is not practical to access high resolution multi-channel space-borne SAR systems. Once a ground moving target is detected, it is possible to retrieve twodimensional velocities of the target from single channel space-borne SAR with an accuracy of about 5 % if moving faster than 3 m/s. This paper presents a quick-and-dirty method for detecting ground moving targets from single channel SAR single-look complex (SLC) images by differentiation. Since the signal powers of derivatives present Doppler centroid and rate, it is very efficient and effective for detection of non-stationary targets. The derivatives correlate well with velocities retrieved by a precise method with a correlation coefficient $R^2$ of 0.62, which is well enough to detect the ground moving targets. While the approach is theoretically straightforward, it is necessary to remove the effects of residual Doppler rate before finalizing the ground moving target candidates. The confidence level of results largely depends on the efficiency and effectiveness of the residual Doppler rate removal method. Application results using TerraSAR-X and truck-mounted corner reflectors validated the efficiency of the method. While the derivatives of moving targets remain easily detectable, the signal energy of stationary corner reflectors was suppressed by about 18.5 dB. It results in an easy detection of ground targets moving faster than 8.8 km/h. The proposed method is applicable to any high resolution single channel SAR systems including KOMPSAT-5.

A Methodology of Ship Detection Using High-Resolution Satellite Optical Image (고해상도 광학 인공위성 영상을 활용한 선박탐지 방법)

  • Park, Jae-Jin;Oh, Sangwoo;Park, Kyung-Ae;Lee, Min-Sun;Jang, Jae-Cheol;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • As the international trade increases, vessel traffics around the Korean Peninsula are also increasing. Maritime accidents hence take place more frequently in the southern coast of Korea where many big and small ports are located. Accidents involving ship collision and sinking result in a substantial human and material damage as well as the marine environmental pollution. Therefore, it is necessary to locate the ships quickly when such accidents occur. In this study, we suggest a new ship detection index by comparing and analyzing the reflectivity of each channel of the Korea MultiPurpose SATellite-2 (KOMPSAT-2) images of the area around the Gwangyang Bay. A threshold value of 0.1 is set based on a histogram analysis, and all vessels are detected when compared with RGB composite images. After selecting a relatively large ship as a representative sample, the distribution of spatial reflectivity around the ship is studied. Uniform shadows are detected on the northwest side of the vessel. This indicates that the sun is in the southeast, the azimuth of the actual satellite image is $144.80^{\circ}$, and the azimuth angle of the sun can be estimated using the shadow position. The reflectivity of the shadows is 0.005 lower than the surrounding sea and ship. The shadow height varies with the position of the bow and the stern, perhaps due to the relative heights of the ship deck and the structure. The results of this study can help search technology for missing vessels using optical satellite images in the event of a marine accident around the Korean Peninsula.