• Title/Summary/Keyword: KNN Model

Search Result 98, Processing Time 0.022 seconds

A study on EPB shield TBM face pressure prediction using machine learning algorithms (머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구)

  • Kwon, Kibeom;Choi, Hangseok;Oh, Ju-Young;Kim, Dongku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.217-230
    • /
    • 2022
  • The adequate control of TBM face pressure is of vital importance to maintain face stability by preventing face collapse and surface settlement. An EPB shield TBM excavates the ground by applying face pressure with the excavated soil in the pressure chamber. One of the challenges during the EPB shield TBM operation is the control of face pressure due to difficulty in managing the excavated soil. In this study, the face pressure of an EPB shield TBM was predicted using the geological and operational data acquired from a domestic TBM tunnel site. Four machine learning algorithms: KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), and XGB (eXtreme Gradient Boosting) were applied to predict the face pressure. The model comparison results showed that the RF model yielded the lowest RMSE (Root Mean Square Error) value of 7.35 kPa. Therefore, the RF model was selected as the optimal machine learning algorithm. In addition, the feature importance of the RF model was analyzed to evaluate appropriately the influence of each feature on the face pressure. The water pressure indicated the highest influence, and the importance of the geological conditions was higher in general than that of the operation features in the considered site.

A Study on the Drug Classification Using Machine Learning Techniques (머신러닝 기법을 이용한 약물 분류 방법 연구)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.8-16
    • /
    • 2024
  • This paper shows the system of drug classification, the goal of this is to foretell the apt drug for the patients based on their demographic and physiological traits. The dataset consists of various attributes like Age, Sex, BP (Blood Pressure), Cholesterol Level, and Na_to_K (Sodium to Potassium ratio), with the objective to determine the kind of drug being given. The models used in this paper are K-Nearest Neighbors (KNN), Logistic Regression and Random Forest. Further to fine-tune hyper parameters using 5-fold cross-validation, GridSearchCV was used and each model was trained and tested on the dataset. To assess the performance of each model both with and without hyper parameter tuning evaluation metrics like accuracy, confusion matrices, and classification reports were used and the accuracy of the models without GridSearchCV was 0.7, 0.875, 0.975 and with GridSearchCV was 0.75, 1.0, 0.975. According to GridSearchCV Logistic Regression is the most suitable model for drug classification among the three-model used followed by the K-Nearest Neighbors. Also, Na_to_K is an essential feature in predicting the outcome.

Human Normalization Approach based on Disease Comparative Prediction Model between Covid-19 and Influenza

  • Janghwan Kim;Min-Yong Jung;Da-Yun Lee;Na-Hyeon Cho;Jo-A Jin;R. Young-Chul Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.32-42
    • /
    • 2023
  • There are serious problems worldwide, such as a pandemic due to an unprecedented infection caused by COVID-19. On previous approaches, they invented medical vaccines and preemptive testing tools for medical engineering. However, it is difficult to access poor medical systems and medical institutions due to disparities between countries and regions. In advanced nations, the damage was even greater due to high medical and examination costs because they did not go to the hospital. Therefore, from a software engineering-based perspective, we propose a learning model for determining coronavirus infection through symptom data-based software prediction models and tools. After a comparative analysis of various models (decision tree, Naive Bayes, KNN, multi-perceptron neural network), we decide to choose an appropriate decision tree model. Due to a lack of data, additional survey data and overseas symptom data are applied and built into the judgment model. To protect from thiswe also adapt human normalization approach with traditional Korean medicin approach. We expect to be possible to determine coronavirus, flu, allergy, and cold without medical examination and diagnosis tools through data collection and analysis by applying decision trees.

Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

  • Luo, Shi-qi;Ni, Bo;Jiang, Ping;Tian, Sheng-wei;Yu, Long;Wang, Rui-jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3654-3670
    • /
    • 2019
  • This paper proposes an Image Texture Median Filter (ITMF) to analyze and detect Android malware on Drebin datasets. We design a model of "ITMF" combined with Image Processing of Median Filter (MF) to reflect the similarity of the malware binary file block. At the same time, using the MAEVS (Malware Activity Embedding in Vector Space) to reflect the potential dynamic activity of malware. In order to ensure the improvement of the classification accuracy, the above-mentioned features(ITMF feature and MAEVS feature)are studied to train Restricted Boltzmann Machine (RBM) and Back Propagation (BP). The experimental results show that the model has an average accuracy rate of 95.43% with few false alarms. to Android malicious code, which is significantly higher than 95.2% of without ITMF, 93.8% of shallow machine learning model SVM, 94.8% of KNN, 94.6% of ANN.

Hybrid CNN-SVM Based Seed Purity Identification and Classification System

  • Suganthi, M;Sathiaseelan, J.G.R.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.271-281
    • /
    • 2022
  • Manual seed classification challenges can be overcome using a reliable and autonomous seed purity identification and classification technique. It is a highly practical and commercially important requirement of the agricultural industry. Researchers can create a new data mining method with improved accuracy using current machine learning and artificial intelligence approaches. Seed classification can help with quality making, seed quality controller, and impurity identification. Seeds have traditionally been classified based on characteristics such as colour, shape, and texture. Generally, this is done by experts by visually examining each model, which is a very time-consuming and tedious task. This approach is simple to automate, making seed sorting far more efficient than manually inspecting them. Computer vision technologies based on machine learning (ML), symmetry, and, more specifically, convolutional neural networks (CNNs) have been widely used in related fields, resulting in greater labour efficiency in many cases. To sort a sample of 3000 seeds, KNN, SVM, CNN and CNN-SVM hybrid classification algorithms were used. A model that uses advanced deep learning techniques to categorise some well-known seeds is included in the proposed hybrid system. In most cases, the CNN-SVM model outperformed the comparable SVM and CNN models, demonstrating the effectiveness of utilising CNN-SVM to evaluate data. The findings of this research revealed that CNN-SVM could be used to analyse data with promising results. Future study should look into more seed kinds to expand the use of CNN-SVMs in data processing.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

Analyzing Key Variables in Network Attack Classification on NSL-KDD Dataset using SHAP (SHAP 기반 NSL-KDD 네트워크 공격 분류의 주요 변수 분석)

  • Sang-duk Lee;Dae-gyu Kim;Chang Soo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.924-935
    • /
    • 2023
  • Purpose: The central aim of this study is to leverage machine learning techniques for the classification of Intrusion Detection System (IDS) data, with a specific focus on identifying the variables responsible for enhancing overall performance. Method: First, we classified 'R2L(Remote to Local)' and 'U2R (User to Root)' attacks in the NSL-KDD dataset, which are difficult to detect due to class imbalance, using seven machine learning models, including Logistic Regression (LR) and K-Nearest Neighbor (KNN). Next, we use the SHapley Additive exPlanation (SHAP) for two classification models that showed high performance, Random Forest (RF) and Light Gradient-Boosting Machine (LGBM), to check the importance of variables that affect classification for each model. Result: In the case of RF, the 'service' variable and in the case of LGBM, the 'dst_host_srv_count' variable were confirmed to be the most important variables. These pivotal variables serve as key factors capable of enhancing performance in the context of classification for each respective model. Conclusion: In conclusion, this paper successfully identifies the optimal models, RF and LGBM, for classifying 'R2L' and 'U2R' attacks, while elucidating the crucial variables associated with each selected model.

Optimal Fingerprint Data Filtering Model for Location Based Services (위치기반 서비스 강화를 위한 최적 데이터 필터링 기법 및 측위 시스템 적용 모델)

  • Jung, Jun;Kim, Jae-Hoon
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.79-90
    • /
    • 2012
  • Focusing on the rapid market penetration of smart phones, the importance of LBS (Location Based Service) is drastically increased. However, traditional GPS method has critical weakness caused by limited availability, such as indoor environment. WPS is newly attractive method as a widely applicable positioning method. In WPS, RSSI (Received Signal Strength Indication) data of all Wi-Fi APs (Access Point) are measured and stored into a huge database. The stored RSSI data in database make single radio fingerprint map. By the radio fingerprint map, we can estimate the actual position of target point. The essential factor of radio fingerprint database is data integrity of RSSI. Because of millions of APs in urban area, RSSI measurement data are seriously contaminated. Therefore, we present the unified filtering method for RSSI measurement data. As the results of filtering, we can show the effectiveness of suggested method in practical positioning system of mobile operator.

High Accuracy of Indoor Hybrid Positioning Method based on Mobile Device (모바일 단말 기반 고정밀 실내 융합 측위 방법)

  • Lee, J.K.;So, W.S.;Lee, J.S.;Yoo, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.6
    • /
    • pp.113-125
    • /
    • 2014
  • 최근 모바일 단말 기술의 발전과 무선망의 성능 향상에 따른 다양한 서비스가 제공되고 있는 추세이며, 위치정보인식시스템과 결합된 서비스에 많은 관심이 높아졌다. 본고에서는 GPS(Global Positioning System)의 신호가 미치지 못하는 건물의 실내환경에 적합한 경로 안내서비스 및 지하시설물 안내 등 초정밀 실내 측위 서비스를 제공하기 위한 융합 측위 방안을 제안한다. 융합 측위 방안은 실내외 연속 측위를 위해 실외에서는 GPS를 이용하고 실내환경에서는 WLAN 기반의 측위 전용 AP(Access Point)를 이용, 전파신호의 LoS(Line of Sight)를 확보하여 측위하고 전파음영지역에서는 스마트폰의 가속도, 자이로센서 등 여러 가지 관성센서를 활용하여 PDR(Pedestrian Dead Reckoning) 알고리즘 등을 적용하여 측위한다. 또한 측위 정확도 향상 및 오차를 줄이기 위한 방법으로 LSE(Least Squire Estimation) 및 EKF(Extended Kalman Filter), KNN(K-Neighbor Node)/MSSM(Maximum Signal Strength Model) Algorithm 등 다양한 융합 측위 알고리즘을 적용하여 실내환경에 적합한 최적의 초정밀 실내 측위 서비스를 제공한다.

  • PDF

Prediction of Frequency Based Precipitation in Korean Peninsular Using Climate Model (기후모형을 이용한 한반도 확률강수량 예측)

  • Kyoung, Min-Soo;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.278-282
    • /
    • 2010
  • 기후변화는 홍수나 가뭄과 같은 극한사상의 발생가능성을 증가시키게 됨과 동시에 하천유량, 홍수, 수질, 생태, 지하수, 농업, 융설, 수력발전 등 수자원 전반에 걸쳐 영향을 미치고 있다. 이 중 홍수는 국민의 생명과 재산에 직접적으로 영향을 미치기 때문에 상당수의 국가들이 홍수로부터 자국민을 보호하기 위한 다양한 정책을 제시하고 있다. 이러한 정책을 수립하는데 있어서 무엇보다 중요한 것이 미래의 강수량이 기후변화로 인하여 얼마나 변하게 되는지를 정량적으로 평가하는 것이다. 이에 본 연구에서는 기후변화의 영향을 평가하기 위해서 프랑스 국립기상연구소에서 개발한 A1b시나리오 기반의 CNCM3모형을 대상으로 KNN기법과 일강수발생모형을 적용하여 기상청 산하 58개 관측소의 일 강수량으로 축소하였다. 제시된 일 강수량을 이용하여 2020s, 2050s, 2080s에 해당하는 80년, 100년, 150년, 200년 빈도의 확률강수량을 각각 산정하였다. 검토결과 확률강수량은 전국 58개 지점 중 49~52개 지점정도가 증가하는 것으로 나타나 현재에 비해서 전반적으로 증가하는 것으로 예측되었으며, 지점별 증가량의 경우, 빈도별로 차이를 보이기는 하나 현재에 비해서 전반적으로 3%~7%정도 증가하는 것을 알 수 있었다.

  • PDF