• Title/Summary/Keyword: KMnO$_4$

Search Result 172, Processing Time 0.035 seconds

Introduction of rolC gene into Petunia hybrida (Petunia hybrida 세포내로의 rolC 유전자의 도입)

  • 정재동;김경민;남윤연;김창길;정원일
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.1
    • /
    • pp.21-26
    • /
    • 1999
  • These experiments were attempted to introduce rolC gene in the Petunia hybrida cv. Titan white by Agrobacterium mediated. The maximum frequency of shoot regeneration was obtained by 60% on MS medium containing 1.0 mg/L BA, 0.1 mg/L NAA, 200 mg/L kanamycin, 500 mg/L carbenicillin, 30 g/L sucrose, and 8 g/L agar. Kanamycin-resistant calli were selected from petunia leaf discs by cocultivation with Agrobacterium suspension cultures on MS medium. The addition of AgNO$_3$ and KMnO$_4$ in the medium increased the shoot regeneration by 31.3% from leaf disc as compared with non-treated leaf disc. Among clones exhibiting kanamycin resistance, only 3 clones were confirmed by southern hybridization analysis.

  • PDF

CONTROL OF DIATOM BY PREOXIDATION AND COAGULATION IN WATER TREATMENT

  • Seo, Jeong-Mi;Kong, Dong-Soo;Ahn, Seoung-Koo;Kim, Hyun-Ook
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • Conventional coagulation is still the main treatment process for algae removal in water treatment. The coagulation efficiency can be significantly improved by the preoxidation of algae-containing water. Jar test was conducted to determine the optimal condition for the removal of diatoms, especially Cyclotella sp. by preoxidation and the subsequent coagulation. The effects of various concentration of PAC (Polyaluminum chloride) on coagulation with and without preoxidation using chlorine or potassium permanganate at different pHs (7.7 and 9.0) were evaluated. At pH 7.7, preoxidation with 2ppm $Cl_2$ followed by coagulation with 7.5 ppm PAC coagulant could reduce Cyclotella sp. concentration by 86%. At pH 9.0, preoxidation with 1 mg $KMnO_4/L$ followed by coagulation with 12.5 ppm PAC coagulant reduced Cyclotella sp. concentration by 85%. Non-linear regression was applied to determine the optimal condition. At pH 7.7 and 9.0, R was over 0.9, respectively. The pH of algal blooming water is over 9.0. Algae (diatom; Cyelotella sp.) can be controlled in the following ways: preoxidation with 1 mg $KMnO_4/L$ followed by coagulation with 12.5 ppm PAC coagulant can remove 80% algae from water. If water pH is adjusted to 7.7, it was expected that less amount of coagulant (7.5 or 10 mg PAC /L) after preoxidation ($Cl_2$ 2 ppm or $KMnO_4$ 0.33, 1 ppm) would be needed to achieve similar level of algae removal. The oxidation with 0.33ppm $KMnO_4$ followed by coagulation with 7.5 ppm PAC coagulant was preferable due to cost-effectiveness of treatment condition and color problem after treatment.

Oxidative Degradation of PCE/TCE Using $KMnO_4$ in Aqueous Solutions under Steady Flow Conditions (유동조건에서 $KMnO_4$도입에 따른 수용액중 PCE/TCE의 산화분해)

  • Kim, Heon-Ki;Kim, Tae-Yun
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.685-693
    • /
    • 2008
  • The rates of oxidative degradation of perchloroethene (PCE) and trichloroethene (TCE) using $KMnO_4$ solution were evaluated under the flow condition using a bench-scale transport experimental setup. Parameters which are considered to affect the reaction rates tested in this study were the contact time (or retention time), and the concentration of oxidizing agent. A glass column packed with coarse sand was used for simulating the aquifer condition. Contact time between reactants was controlled by changing the flow rate of the solution through the column. The inflow concentrations of PCE and TCE were controlled constant within the range of $0.11{\sim}0.21\;mM$ and $1.3{\sim}1.5\;mM$, respectively. And the contact time was $14{\sim}125$ min for PCE and $15{\sim}36$ min for TCE. The $KMnO_4$ concentration was controlled constant during experiment in the range of $0.6{\sim}2.5\;mM$. It was found that the reduction of PCE and TCE concentrations were inversely proportional to the contact time. The exact reaction order for the PCE and TCE degradation reaction could not be determined under the experimental condition used in this study. However, the estimated reaction rate constants assuming pseudo-1st order reaction agree with those reported based on batch studies. TCE degradation rate was proportional to $KMnO_4$ concentration. This was considered to be the result of using high inflow concentrations of reactant, which might be the case at the vicinity of the source zones in aquifer. The results of this study, performed using a dynamic flow system, are expected to provide useful information for designing and implementing a field scale oxidative removal process for PCE/TCE-contaminated sites.

Abiotic Degradation Degradation of the Herbicide Oxadiazon in Water

  • Rahman Md. Mokhlesur;Park, Jong-Woo;Park, Man;Rhee In-Koo;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.157-161
    • /
    • 2006
  • The performance of abiotic degradation of oxadiazon was investigated by applying zerovalent iron(ZVI), potassium permanganate($KMnO_4$) and titanium dioxide($TiO_2$) in the contaminated water. Experimental conditions allowed the disappearance of oxadiazon in the abiotic system. The degradation of this herbicide was monitored in buffer solutions having pH 3, 5 and 7 in the presence of iron powder in which the maximum degradation rate was achieved at acidic condition(pH 3) by 2% of ZVI treatment. The oxidative degradation of oxadiazon was observed in aqueous solution by $KMnO_4$ at pH 3, 7 and 10 in which the highest disappearance rate was found at neutral pH when treated with 2% of $KMnO_4$. The catalytic degradation of oxadiazon in $TiO_2$ suspension was obtained under dark and UV irradiation conditions. UV irradiation enhanced the degradation of oxadiazon in aquatic system in the presence of $TiO_2$. Conclusively, the remediation strategy using these abiotic reagents could be applied to remove oxadiazon from the contaminated water.

In Vitro Hemolysis and Methemoglobin Formation in Olive Flounder (Paralichthys olivaceus) Erythrocytes Induced by Potassium Permanganate, Stabilized Chlorine Dioxide, Formalin and Copper Sulphate (과망간산칼륨, 안정화이산화염소, 포르말린, 황산동이 넙치(Paralichthys olivaceus) 적혈구에 미치는 시험관내 용혈작용 및 메트헤모글로빈 생성 효과)

  • Jung, Sung-Hee;Kim, Jin-Woo
    • Journal of fish pathology
    • /
    • v.18 no.2
    • /
    • pp.179-185
    • /
    • 2005
  • In Vitro hemolysis and methemoglobin (MetHb) formation in olive flounder rythrocytes were investigated using potassium permanganate ($KMnO_4$) ranging from 2 to 250 ppm, stabilized chlorine dioxide ($S-ClO_2$)ranging from 3.13 to 400 ppm, formalin (37% formaldehyde) ranging from 31.3 to 2,000 ppm and copper sulphate ($CuSO_4$) ranging from 0.04 to 5 ppm. Remarkable hemolysis was found to be induced at $KMnO_4$ concentrations of 31.3-250 ppm and $CuSO_4$ concentrations of 0.63-5 ppm. On the other hand, MetHb formation could not be found at the same treatment concentrations. It is suggested that the cell-damaging system of $KMnO_4$ may be similar from that of $CuSO_4$ in the erythrocytes of olive flounder. Remarkable hemolysis and MetHb formation were found to be induced at $S-ClO_4$ concentrations of more than 25 ppm and 6.25 ppm, respectively. Only $S-ClO_2$ showed both hemolysis and MetHb formation among the chemicals used in the present study. Formalin did not provoke hemolysis at the highest concentration of 2,000 ppm but induced MetHb formation at ranging from 250 to 2,000 ppm. These findings reveal that the mechanism involved in formalin-induced cell-damaging effects differs from that induced by $S-ClO_2$ to olive flounder erythrocytes compared with $KMnO_4$ and $CuSO_4$.

Reuse of reverse osmosis membranes for wastewater treatment (Beni Saf Water Company)

  • Khadidja Benyahia;Mouhssin Khiari;Mourad Berrabah
    • Membrane and Water Treatment
    • /
    • v.15 no.4
    • /
    • pp.153-162
    • /
    • 2024
  • The current research project focuses on the feasibility of recycling and reusing utilized osmosis membranes from the Beni Saf water seawater desalination station in the province of Ain Temouchent. The composite Reverse Osmosis (RO) membrane, which is referenced BW30-400-FR and manufactured by Dow Filmtec TM, is used for all the tests. Three solvents are tested: potassium permanganate (KMnO4), sodium hydroxide (NaOH), hydrogen peroxide (H2O2), and the mixture of NaOH with KMnO4 for the degradation of the active layer of the RO membrane. A frontal filtration of wastewater using these modified membranes was carried out. An analysis of the physicochemical properties of the filtrate was performed using a spectrophotometer. The results of the frontal filtration performed under perpendicular pressure using a filtration ramp show that the membranes immersed in the NaOH and KMnO4 mixture for 24 hours produced a higher hydraulic flux compared to those immersed in NaOH and H2O2. At the end of the proposed treatment, the samples are analyzed by scanning electron microscopy (SEM) in addition to analyzing the clogging powder by EDX. The obtained results show the effectiveness of the proposed treatment for the degradation of the active layer in order to transform it into microfiltration and/or ultrafiltration.

Effects of Addition of Three Different Chemicals to Litter on Broiler Performance, Ammonia and Carbon Dioxide Production in Poultry Houses (세 가지 서로 다른 화학제재를 깔짚에 첨가시 육계 생산성, 계사내 암모니아와 이산화탄소 가스 발생에 미치는 영향)

  • Nahm K. H
    • Korean Journal of Poultry Science
    • /
    • v.31 no.4
    • /
    • pp.213-219
    • /
    • 2004
  • The objectives of this study were to investigate the effect of applying three different chemical additives to the litter (rice hull) on broiler performance, ammonia and carbon dioxide gas reduction in a poultry house at 6 weeks. A total of 96 broiler chicks (6 treatments$\times$4 replicates$\times$4 birds) were fed the experimental diets for 6 weeks. The chemical additives were applies as a top dressing to the litter at a rate of 200 g ferrous sulfate $(FeSO_4)$, 200 g aluminum chloride $(AlCl_3)$ + 50 g calcium carbonate $(CaCO_3)$ and 20 g potassium permanganate $(KMnO_4)$ per kg litter, while the control group did not have the three different chemicals added to the litter. There were no significant differences in broiler performance between the three chemical additives and control group. $FeSO_4\;and\;AlCl_3\;+\;CaCO_3$ treatment reduced ammonia production from the litter at 6 weeks by as much as 91 and $53\%$, respectively (P<0.05). $KMnO_4$ treatment decreased ammonia production at 6 weeks up to $69\%$ compared to the controls (P<0.05). Poultry litter amended with $AlCl_3\;+\;CaCO_3\;and\;KMnO_4$ also caused a decrease (P<0.01) in carbon dioxide productions at 6 weeks (59 and $65\%$, respectively). In conclusion, although broiler performance was not affected by the three chemical additives and control group, these results indicate that $FeSO_4,\;AlCl_3\;+\;CaCO_3\;and\;KMnO_4$ application to litter in a poultry house resulted in a significant reduction in atmospheric ammonia and carbon dioxide gas.

Effect of Coagulants and Separation Methods on Algal Removal in Water Treatment Process (정수처리에서 응집제 종류와 분리공정이 조류 제거에 미치는 영향)

  • Park, Hung-Suck;Lee, Sang-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.279-289
    • /
    • 2000
  • The objective of this study was to investigate the effect of coagulants and solid-liquid separation methods on algal removal in water treatment processes. Thus characterization of raw water quality in terms of turbidity. UV-254, $KMnO_4$ consumption, chlorophyll-a and correlation analysis of these parameters were conducted. In addition, the effect of commercial Al-based coagulants(Alum. PAC and PACS) on algal removal was studied by turbidity and organic removal, algal species removal, characteristic of pH drop and alkalinity consumption using laboratory jar tests. Organic components including UV-254, $KMnO_4$ consumption, chlorophyll-a in case of algal bloom were highly correlated with turbidity and the correlation coefficients of UV-254, $KMnO_4$ consumption, chlorophyll-a with turbidity were 0.775, 0674 and 0.623, respectively. In coagulation and sedimentation, the Al-based coagulants showed similar efficiency of organic and turbidity removal in low organic($KMnO_4$ consumption below 15mg/l) and low turbidity(below 30NTU). However, PAC and PACS showed better algal removal than alum in high organic concentration($KMnO_4$ consumption above 20mg/l) and high turbidity(above 100NTU) raw water conditions generated by high algal growth, which is considered to be due to the floc settleability. In comparison of sedimentation and flotation after chemical coagulation and flocculation, the removal efficiency of organic and turbidity were higher in case of alum dose with flotation than with sedimentation, while those were better in case or PAC and PACS with sedimentation than with flotation. Thus, Alum with flotation and PAC and PACS with sedimentation is recommended for efficient algal removal. The dominant phytoplankton in raw water were Microcystic and pediastrum simplex and the removal efficiency of algae with sedimentation using alum. PAC and PACS were 27%, 45% and 22% respectively, while those with DAF showed 100% removal of phytoplankton and zooplankton.

  • PDF

The Characteristics of Groundwaters in Taegu City (대구시 지하수의 수질특성)

  • Park Byung-Yoon;Cheon Kyung-Ah;Lee Dong-Hoon;Choi Choong-Ryeol;Choi Jyung;Kim Jin-Ho
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.685-690
    • /
    • 1999
  • The pollution characteristics of groundwaters in Taegu City and correlation coefficients(r) between water pollution indicators were investigated for two years from January 1996 to December 1997. Volatile organic compounds such as TCE(tri-chloroethylene), PCE(tetrachloroethylene), l,l,l-trichloroethane, THM(trihalo-methane), dichloromethane, pesticides such as diazinon, parathion, malathion, and toxic inoganic matters such as As, Hg, Se, Pb, Cd, $Cr_6^+,$ CN were not detected in the groundwaters. Mean values of groundwater pollution indicators were below drinking-water standards, but hardness, $KMnO_4-C(potassium$ permanganate consumption), evaporate residues, $SO_4^{-2},\;Fe,\;NO_3^{-}-N,$ color and turbidity exceeded a little in some samples. As groundwater became deeper, hardness and evaporate residues remarkably increased, but $KMnO_4-C,\;NO_3^{-}-N,\;Cl-,$ color, turbity and bacteria decreased. $KMnO_4-C,$ evaporate residues, $Cl^-\;and\;SO_4^{-2}$ were very high at industrial and commercial areas, and $NO_3^--N$ and $NH_4^+-N$ were very high at agricultural and forest areas. It showed high positive significances in the relationships between hardness and each of evaporate residues, $SO_4^{-2}$, Zn and Mn, $KMnO_4-C$ and each of color, turbidity and Zn, color and each of turbidity, Cu, Zn and Mn, turbidity and each of Fe, Cu, Zn and Mn, and evaporate residues and each of $Cl^-,\;SO_4^{-2}$ and Zn.

  • PDF