• Title/Summary/Keyword: KLT-Model

Search Result 20, Processing Time 0.021 seconds

Cloning of Korean Morphological Analyzers using Pre-analyzed Eojeol Dictionary and Syllable-based Probabilistic Model (기분석 어절 사전과 음절 단위의 확률 모델을 이용한 한국어 형태소 분석기 복제)

  • Shim, Kwangseob
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.3
    • /
    • pp.119-126
    • /
    • 2016
  • In this study, we verified the feasibility of a Korean morphological analyzer that uses a pre-analyzed Eojeol dictionary and syllable-based probabilistic model. For the verification, MACH and KLT2000, Korean morphological analyzers, were cloned with a pre-analyzed eojeol dictionary and syllable-based probabilistic model. The analysis results were compared between the cloned morphological analyzer, MACH, and KLT2000. The 10 million Eojeol Sejong corpus was segmented into 10 sets for cross-validation. The 10-fold cross-validated precision and recall for cloned MACH and KLT2000 were 97.16%, 98.31% and 96.80%, 99.03%, respectively. Analysis speed of a cloned MACH was 308,000 Eojeols per second, and the speed of a cloned KLT2000 was 436,000 Eojeols per second. The experimental results indicated that a Korean morphological analyzer that uses a pre-analyzed eojeol dictionary and syllable-based probabilistic model could be used in practical applications.

A new AR power spectral estimation technique using the Karhunen-Loeve Transform (KLT를 이용한 AR 스펙트럼 추정기법에 관한 연구)

  • 공성곤;양흥석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.134-136
    • /
    • 1986
  • In this paper, a new power spectral estimation technique is presented. At first, by transforming the original data with the Karhunen-Loeve Transform(KLT), we can reduce the amount of the redundant information. Next, by modeling the transformed data by means of the autoregressive(AR) model and then applying the least-squares parameter estimation algorithm to this model, even more accurate spectrum estimates can be obtained. The KLT is the optimum transform for signal representation with respect to the mean-square error criterion. And the least-squares method is used to overcome the inherent shortcomings of popular burg algorithm.

  • PDF

A Face Recognition using the Hidden Markov Model and Karhuman Loevs Transform (Hidden Markov Model과 Karhuman Loevs Transform를 이용한 얼굴인식)

  • Kim, Do-Hyun;Hwang, Suen-Ki;Kang, Yong-Seok;Kim, Tae-Woo;Kim, Moon-Hwan;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.3-8
    • /
    • 2011
  • The work presented in this paper describes a Hidden Markov Model(HMM)-based framework for face recognition and face detection. The observation vectors used to characterize the statics of the HMM are obtained using the coefficients of the Karhuman-Loves Transform(KLT). The face recognition method presented in this paper reduces significantly the computational complexity of previous HMM-based face recognition systems, while slightly improving the recognition rate. In addition, the suggested method is more effective than the exiting ones in face extraction in terms of accuracy and others even under complex changes to the surroundings such as lighting.

Particle Filter Based Feature Points Tracking for Vision Based Navigation System (영상기반항법을 위한 파티클 필터 기반의 특징점 추적 필터 설계)

  • Won, Dae-Hee;Sung, Sang-Kyung;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.35-42
    • /
    • 2012
  • In this study, a feature-points-tracking algorithm is suggested using a particle filter for vision based navigation system. By applying a dynamic model of the feature point, the tracking performance is increased in high dynamic condition, whereas a conventional KLT (Kanade-Lucas-Tomasi) cannot give a solution. Futhermore, the particle filter is introduced to cope with irregular characteristics of vision data. Post-processing of recorded vision data shows that the tracking performance of suggested algorithm is more robust than that of KLT in high dynamic condition.

A vision based people tracking and following for mobile robots using CAMSHIFT and KLT feature tracker (캠시프트와 KLT특징 추적 알고리즘을 융합한 모바일 로봇의 영상기반 사람추적 및 추종)

  • Lee, S.J.;Won, Mooncheol
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.787-796
    • /
    • 2014
  • Many mobile robot navigation methods utilize laser scanners, ultrasonic sensors, vision camera, and so on for detecting obstacles and path following. However, human utilizes only vision(e.g. eye) information for navigation. In this paper, we study a mobile robot control method based on only the camera vision. The Gaussian Mixture Model and a shadow removal technology are used to divide the foreground and the background from the camera image. The mobile robot uses a combined CAMSHIFT and KLT feature tracker algorithms based on the information of the foreground to follow a person. The algorithm is verified by experiments where a person is tracked and followed by a robot in a hallway.

A Moving Camera Localization using Perspective Transform and Klt Tracking in Sequence Images (순차영상에서 투영변환과 KLT추적을 이용한 이동 카메라의 위치 및 방향 산출)

  • Jang, Hyo-Jong;Cha, Jeong-Hee;Kim, Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.163-170
    • /
    • 2007
  • In autonomous navigation of a mobile vehicle or a mobile robot, localization calculated from recognizing its environment is most important factor. Generally, we can determine position and pose of a camera equipped mobile vehicle or mobile robot using INS and GPS but, in this case, we must use enough known ground landmark for accurate localization. hi contrast with homography method to calculate position and pose of a camera by only using the relation of two dimensional feature point between two frames, in this paper, we propose a method to calculate the position and the pose of a camera using relation between the location to predict through perspective transform of 3D feature points obtained by overlaying 3D model with previous frame using GPS and INS input and the location of corresponding feature point calculated using KLT tracking method in current frame. For the purpose of the performance evaluation, we use wireless-controlled vehicle mounted CCD camera, GPS and INS, and performed the test to calculate the location and the rotation angle of the camera with the video sequence stream obtained at 15Hz frame rate.

Face Recognition Method Robust to Change in Lighting Condition (조명의 변화에 강건한 얼굴인식)

  • Nam, Kee-Hwan;Han, Jun-Hee;Park, Ho-Sik;Lee, Young-Sik;Jung, Yen-Gil;Ra, Sang-Dong;Bae, Cheol-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1137-1140
    • /
    • 2005
  • The work presented in this paper describes a Hidden Markov Model(HMM)-based framework for face recognition and face detection. The observation vectors used to characterize the statics of the HMM are obtained using the coefficients of the Karhuman-Loves Transform(KLT). The face recognition method presented in this paper reduces significantly the computational complexity of previous HMM-based face recognition systems, while slightly improving the recognition rate. In addition, the suggested method is more effective than the exiting ones in face extraction in terms of accuracy and others even under complex changes to the surroundings such as lighting.

  • PDF

Crowd escape event detection based on Direction-Collectiveness Model

  • Wang, Mengdi;Chang, Faliang;Zhang, Youmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4355-4374
    • /
    • 2018
  • Crowd escape event detection has become one of the hottest problems in intelligent surveillance filed. When the 'escape event' occurs, pedestrians will escape in a disordered way with different velocities and directions. Based on these characteristics, this paper proposes a Direction-Collectiveness Model to detect escape event in crowd scenes. First, we extract a set of trajectories from video sequences by using generalized Kanade-Lucas-Tomasi key point tracker (gKLT). Second, a Direction-Collectiveness Model is built based on the randomness of velocity and orientation calculated from the trajectories to express the movement of the crowd. This model can describe the movement of the crowd adequately. To obtain a generalized crowd escape event detector, we adopt an adaptive threshold according to the Direction-Collectiveness index. Experiments conducted on two widely used datasets demonstrate that the proposed model can detect the escape events more effectively from dense crowd.

Deformation estimation of truss bridges using two-stage optimization from cameras

  • Jau-Yu Chou;Chia-Ming Chang
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.409-419
    • /
    • 2023
  • Structural integrity can be accessed from dynamic deformations of structures. Moreover, dynamic deformations can be acquired from non-contact sensors such as video cameras. Kanade-Lucas-Tomasi (KLT) algorithm is one of the commonly used methods for motion tracking. However, averaging throughout the extracted features would induce bias in the measurement. In addition, pixel-wise measurements can be converted to physical units through camera intrinsic. Still, the depth information is unreachable without prior knowledge of the space information. The assigned homogeneous coordinates would then mismatch manually selected feature points, resulting in measurement errors during coordinate transformation. In this study, a two-stage optimization method for video-based measurements is proposed. The manually selected feature points are first optimized by minimizing the errors compared with the homogeneous coordinate. Then, the optimized points are utilized for the KLT algorithm to extract displacements through inverse projection. Two additional criteria are employed to eliminate outliers from KLT, resulting in more reliable displacement responses. The second-stage optimization subsequently fine-tunes the geometry of the selected coordinates. The optimization process also considers the number of interpolation points at different depths of an image to reduce the effect of out-of-plane motions. As a result, the proposed method is numerically investigated by using a truss bridge as a physics-based graphic model (PBGM) to extract high-accuracy displacements from recorded videos under various capturing angles and structural conditions.

Online Multi-view Range Image Registration using Geometric and Photometric Feature Tracking (3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합)

  • Baek, Jae-Won;Moon, Jae-Kyoung;Park, Soon-Yong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.493-502
    • /
    • 2007
  • An on-line registration technique is presented to register multi-view range images for the 3D reconstruction of real objects. Using a range camera, we first acquire range images and photometric images continuously. In the range images, we divide object and background regions using a predefined threshold value. For the coarse registration of the range images, the centroid of the images are used. After refining the registration of range images using a projection-based technique, we use a modified KLT(Kanade-Lucas-Tomasi) tracker to match photometric features in the object images. Using the modified KLT tracker, we can track image features fast and accurately. If a range image fails to register, we acquire new range images and try to register them continuously until the registration process resumes. After enough range images are registered, they are integrated into a 3D model in offline step. Experimental results and error analysis show that the proposed method can be used to reconstruct 3D model very fast and accurately.