• Title/Summary/Keyword: KLT Tracking

Search Result 25, Processing Time 0.024 seconds

A Moving Object Tracking using Color and OpticalFlow Information (컬러 및 광류정보를 이용한 이동물체 추적)

  • Kim, Ju-Hyeon;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.112-118
    • /
    • 2014
  • This paper deals with a color-based tracking of a moving object. Firstly, existing Camshift algorithm is complemented to improve the tracking weakness in the brightness change of an image which occurs in every frame. The complemented Camshift still shows unstable tracking when the objects with same color of the tracking object exist in background. In order to overcome the drawback this paper proposes the Camshift combined with KLT algorithm based on optical flow. The KLT algorithm performing the pixel-based feature tracking can complement the shortcoming of Camshift. Experimental results show that the merged tracking method makes up for the drawback of the Camshit algorithm and also improves tracking performance.

Sequence Images Registration by using KLT Feature Detection and Tracking (KLT특징점 검출 및 추적에 의한 비디오영상등록)

  • Ochirbat, Sukhee;Park, Sang-Eon;Shin, Sung-Woong;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • Image registration is one of the critical techniques of image mosaic which has many applications such as generating panoramas, video monitoring, image rendering and reconstruction, etc. The fundamental tasks of image registration are point features extraction and tracking which take much computation time. KLT(Kanade-Lucas-Tomasi) feature tracker has proposed for extracting and tracking features through image sequences. The aim of this study is to demonstrate the usage of effective and robust KLT feature detector and tracker for an image registration using the sequence image frames captured by UAV video camera. In result, by using iterative implementation of the KLT tracker, the features extracted from the first frame of image sequences could be successfully tracked through all frames. The process of feature tracking in the various frames with rotation, translation and small scaling could be improved by a careful choice of the process condition and KLT pyramid implementation.

  • PDF

Particle Filter Based Feature Points Tracking for Vision Based Navigation System (영상기반항법을 위한 파티클 필터 기반의 특징점 추적 필터 설계)

  • Won, Dae-Hee;Sung, Sang-Kyung;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.35-42
    • /
    • 2012
  • In this study, a feature-points-tracking algorithm is suggested using a particle filter for vision based navigation system. By applying a dynamic model of the feature point, the tracking performance is increased in high dynamic condition, whereas a conventional KLT (Kanade-Lucas-Tomasi) cannot give a solution. Futhermore, the particle filter is introduced to cope with irregular characteristics of vision data. Post-processing of recorded vision data shows that the tracking performance of suggested algorithm is more robust than that of KLT in high dynamic condition.

Registration of UAV Overlapped Image

  • Ochirbat, Sukhee;Cho, Eun-Rae;Kim, Eui-Myoung;Yoo, Hwan-Hee
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.245-246
    • /
    • 2008
  • The goal of this study is to explore the possibility of KLT tracker for tracking the features between two images including rotation and shift. As a test site, Jangsu-Gun area of South Korea is selected and the images taken from UAV camera are used for analysis. The analysis was carried out using KLT tracker developed in a PC environment. The results of the experiment used two images with the large overlapping area are compared with the results of two images with the little overlapping area and rotation. Overall, the research indicates that the integrated features of littlerotation and motion images can significantly increase during the tracking process. But using KLT tracker for extracting and tracking features between images with large rotation and motion, the number of tracked features are decreased.

  • PDF

Face detection using haar-like feature and Tracking with Lucas-Kanade feature tracker (Haar-like feature를 이용한 얼굴 검출과 추적을 위한 Lucas-Kanade특징 추적)

  • Kim, Ki-Sang;Kim, Se-Hoon;Park, Gene-Yong;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.835-838
    • /
    • 2008
  • In this paper, we present automatic face detection and tracking which is robustness in rotation and translation. Detecting a face image, we used Haar-like feature, which is fast detect facial image. Also tracking, we applied Lucas-Kanade feature tracker and KLT algorithm, which has robustness for rotated facial image. In experiment result, we confirmed that face detection and tracking which is robustness in rotation and translation.

  • PDF

Corresponding Points Tracking of Aerial Sequence Images

  • Ochirbat, Sukhee;Shin, Sung-Woong;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.11-16
    • /
    • 2008
  • The goal of this study is to evaluate the KLT(Kanade-Lucas-Tomasi) for extracting and tracking the features using various data acquired from UAV. Sequences of images were collected for Jangsu-Gun area to perform the analysis. Four data sets were subjected to extract and track the features using the parameters of the KLT. From the results of the experiment, more than 90 percent of the features extracted from the first frame could successfully track through the next frame when the shift between frames is small. But when the frame to frame motion is large in non-consecutive frames, KLT tracker is failed to track the corresponding points. Future research will be focused on feature tracking of sequence frames with large shift and rotation.

  • PDF

A Hardware Implementation of Pyramidal KLT Feature Tracker (계층적 KLT 특징 추적기의 하드웨어 구현)

  • Kim, Hyun-Jin;Kim, Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.57-64
    • /
    • 2009
  • This paper presents the hardware implementation of the pyramidal KLT(Kanade-Lucas-Tomasi) feature tracker. Because of its high computational complexity, it is not easy to implement a real-time KLT feature tracker using general-purpose processors. A hardware implementation of the pyramidal KLT feature tracker using FPGA(Field Programmable Gate Array) is described in this paper with emphasis on 1) adaptive adjustment of threshold in feature extraction under diverse lighting conditions, and 2) modification of the tracking algorithm to accomodate parallel processing and to overcome memory constraints such as capacity and bandwidth limitation. The effectiveness of the implementation was evaluated over ones produced by its software implementation. The throughput of the FPGA-based tracker was 30 frames/sec for video images with size of $720{\times}480$.

Stable Feature Point Selection Using KLT Algorithm for Tracking (KLT 알고리즘을 이용한 추적에서 안정된 특징점 선택)

  • Kim Yong-Jin;Lee Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.661-664
    • /
    • 2006
  • 본 논문에서는 특징기반 물체추적을 위해 많이 사용되고 있는 KLT(Kanade-Lucas-Tomasi) 알고리즘을 소개하고, 이 알고리즘을 이용한 특징점(corner) 추출시, 영상에서 잡음의 영향이 KLT 알고리즘의 성능에 어떤 영향을 미치는지 잡음이 포함된 영상과 포함되지 않은 영상을 이용하여 안정된 특징점 추출을 위한 실험을 실시하고 비교 분석하였다.

  • PDF

A Moving Camera Localization using Perspective Transform and Klt Tracking in Sequence Images (순차영상에서 투영변환과 KLT추적을 이용한 이동 카메라의 위치 및 방향 산출)

  • Jang, Hyo-Jong;Cha, Jeong-Hee;Kim, Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.163-170
    • /
    • 2007
  • In autonomous navigation of a mobile vehicle or a mobile robot, localization calculated from recognizing its environment is most important factor. Generally, we can determine position and pose of a camera equipped mobile vehicle or mobile robot using INS and GPS but, in this case, we must use enough known ground landmark for accurate localization. hi contrast with homography method to calculate position and pose of a camera by only using the relation of two dimensional feature point between two frames, in this paper, we propose a method to calculate the position and the pose of a camera using relation between the location to predict through perspective transform of 3D feature points obtained by overlaying 3D model with previous frame using GPS and INS input and the location of corresponding feature point calculated using KLT tracking method in current frame. For the purpose of the performance evaluation, we use wireless-controlled vehicle mounted CCD camera, GPS and INS, and performed the test to calculate the location and the rotation angle of the camera with the video sequence stream obtained at 15Hz frame rate.

Error Correction of Interested Points Tracking for Improving Registration Accuracy of Aerial Image Sequences (항공연속영상 등록 정확도 향상을 위한 특징점추적 오류검정)

  • Sukhee, Ochirbat;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • This paper presents the improved KLT(Kanade-Lucas-Tomasi) of registration of Image sequence captured by camera mounted on unmanned helicopter assuming without camera attitude information. It consists of following procedures for the proposed image registration. The initial interested points are detected by characteristic curve matching via dynamic programming which has been used for detecting and tracking corner points thorough image sequence. Outliers of tracked points are then removed by using Random Sample And Consensus(RANSAC) robust estimation and all remained corner points are classified as inliers by homography algorithm. The rectified images are then resampled by bilinear interpolation. Experiment shows that our method can make the suitable registration of image sequence with large motion.