• Title/Summary/Keyword: KL-510

Search Result 12, Processing Time 0.016 seconds

Design Validation through Analysis of Concrete Modular Road Behavior under Static Axial Loads (콘크리트 모듈러 도로 축하중 거동 분석을 통한 설계 타당성 검증)

  • Nam, Jeong-Hee;Kim, Woo Seok;Kim, Ki Hyun;Kim, Yeon Bok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.37-45
    • /
    • 2015
  • PURPOSES : The purpose of this study is to validate the design criteria of the concrete modular road system, which is a new semi-bridge-type concept road, through a comparison of numerical analysis results and actual loading test results under static axial loads. METHODS : To design the semi-bridge-type modular road, both the bridge design code and the concrete structural design code were adopted. The standard truck load (KL-510) was applied as the major traffic vehicle for the design loading condition. The dimension of the modular slab was designed in consideration of self-weight, axial load, environmental load, and combined loads, with ultimate limit state coefficients. The ANSYS APDL (2010) program was used for case studies of center and edge loading, and the analysis results were compared with the actual mock-up test results. RESULTS : A full-scale mock-up test was successfully conducted. The maximum longitudinal steel strains were measured as about 35 and 83.5 micro-strain (within elastic range) at center and edge loading locations, respectively, under a 100 kN dual-wheel loading condition by accelerating pavement tester. CONCLUSIONS : Based on the results of the comparison between the numerical analysis and the full-scale test, the maximum converted stress range at the edge location is 32~51% of the required standard flexural strength under the two times over-weight loading condition. In the case of edge loading, the maximum converted stresses from the Westergaard equation, the ANSYS APDL analysis, and the mock-up test are 1.95, 1.7, and 2.3 times of that of the center loading case, respectively. The primary reason for this difference is related to the assumption of the boundary conditions of the vertical connection between the slab module and the crossbeam module. Even though more research is required to fully define the boundary conditions, the proposed design criteria for the concrete modular road finally seems to be reasonable.

Distribution of Methyl Mercury in Sediments from Kyeonggi Bay, Namyang Bay, Chinhae Bay, and Lake Shihwa, Korea

  • Lee, Kyu-Tae;Kannan, Kurunthachalam;Shim, Won-Joon;Koh, Chul-Hwan
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.178-184
    • /
    • 1998
  • To elucidate contamination levels and distribution of methyl mercury (Me-Hg) in Korean coastal areas, 126 sediment samples were collected from Kyeonggi Bay, Namyang Bay, Chinhae Bay, and Lake Shihwa during 1995-1996, and the Me-Hg concentrations were determined by cold vapor atomic fluorescence spectrometry (CVAFS). Contamination levels of Me-Hg in sediments from Kyeonggi Bay, Namyang Bay, Chinhae Bay, and Lake Shihwa were 274 ${\pm}$ 990, 108 ${\pm}$ 24, 294 ${\pm}$ 342, and 1080 ${\pm}$ 760 pg/g, respectively. Concentrations of Me-Hg in sediments were significantly correlated with total organic carbon and sulfur contents, but were independent of mud contents and mean grain size. The highest concentration of Me-Hg (7100 pg/g) was observed at Incheon North Harbor (Site Kl9) in Kyeonggi Bay. This Me-Hg concentration was one or two orders of magnitude higher than those in other Kyeonggi Bay sediments were. The average concentration of Me-Hg in sediments from Lake Shihwa was higher than in those from other study areas. The three peaks of Me-Hg concentrations were observed on three sites (55, 56,and 510) in Lake Shihwa and gradually decreased in distance-dependent manner around these sites. High concentrations of Me-Hg at surface and 10-cm sediment depth in Chinhae Bay maybe due to higher rates of methylation process by active sulfate-reducing bacteria or higher concentrations of total mercury available to sulfate-reducing bacteria.

  • PDF