• Title/Summary/Keyword: KL transform

Search Result 16, Processing Time 0.023 seconds

Recognition of Off-line Handwritten Numerals using KL Transformation (KL변환에 의한 오프라인 필기체 숫자인식)

  • 박중조;김경민;송명현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.912-915
    • /
    • 2002
  • This paper presents off-line handwritten numeral recognition method by using Eigen-Vectors. In this method, numeral features are extracted statistically by using Eigen-Vectors through KL transform and input numeral is recognized in the feature space by the nearest-neighbor classifier. In our feature extraction method, basis vectors which express best the property of each numeral type within the extensive database of sample numeral images are calculated, and the numeral features are obtained by using this basis vectors. Through the experiments with the unconstrained handwritten numeral database of Concordia University, we have achieved a recognition rate of 96.2%.

  • PDF

Recognition of Handwritten Numerals using Eigenvectors (고유벡터를 이용한 필기체 숫자인식)

  • 박중조;김경민;송명현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.986-991
    • /
    • 2002
  • This paper presents off-line handwritten numeral recognition method by using Eigen-Vectors. In this method, numeral features are extracted statistically by using Eigen-Vectors through KL transform and input numeral is recognized in the feature space by the nearest-neighbor classifier. In our feature extraction method, basis vectors which express best the property of each numeral type within the extensive database of sample numeral images are calculated, and the numeral features are obtained by using this basis vectors. Through the experiments with the unconstrained handwritten numeral database of Concordia University, we have achieved a recognition rate of 96.2%.

Separable KL transform using reference samples (참조샘플을 이용한 분할가능한 KL 변환)

  • Kim, Nam Uk;Lee, Yung-Lyul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.546-549
    • /
    • 2020
  • 본 논문에서는 최신 비디오 코딩 기술에서 잔차(Residual)신호 변환을 효율적으로 수행하기 위한 부동기저(Basis)를 사용하는 방법을 제안한다. 기존의 DCT-II 나 DST-VII 과 같은 고정 기저를 사용하는 방법은 대부분의 잔차신호들에 대해 효과적으로 비상관화(decorrelation)를 수행하지만 복잡한 잔차 신호일수록 성능이 떨어지는 문제가 있었다. 이러한 압축 성능하락 문제를 줄이기 위하여 PCA(Principle Component Analysis) 방법 중 하나인 KLT(Karhunen-Loeve Transform)를 이용하여 부동(floating) 변환 기저를 유도하는 방법을 제안한다. 기존의 KLT 를 이용한 변환 커널 유도 방법들의 문제점인 부호화기 및 복호화기 계산 복잡도를 줄이기 위하여 KL 커널을 분해가능한(Separable) 2 개의 1 차원 커널로 유도하는 방법을 제안하고, 원본 잔차신호와 유사한 텍스처를 찾아 커널을 예측하는 과정을 간소화하는 방법을 제안한다. 제안하는 방법은 HEVC 에서 실험되었으며 정지영상 코딩 Main-Profile 에서 평균 1.4%가량의 BD-PSNR(Bjontegaard Delta-Peak Signal to Noise Ratio) 성능 향상을 보였으며 특히 스크린 컨텐츠 영상에서 최대 4.5%의 성능 향상을 보인다.

  • PDF

Characteristics of the Nisin-Resistant Transformants of Lactococcus lactis subsp. lactis LM0230

  • Kang, Hyeong-Joon;Kim, Jeong-Hwan;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.217-223
    • /
    • 1993
  • To investigate the nature and location of the nisin-resistance determinant of Lactococcus lactis subsp. lactis 7962 (L. lactis 7962), a total plasmid DNA prepared from L. lactis 7962, a nisin producer, was used to transform L. lactis subsp. lactis LM0230, a plasmid-free and nisin-sensitive strain, by protoplast mediated transformation procedures. All of the nisin-resistant transformants acquired the ability to utilize sucrose at the same time, confirming the close linkage between these two determinants in L. lactis 7962. The plasmid DNA profiles of a few selected nisin-resistant transformants were examined by agarose gel electrophoresis. No common plasmid was found among the transformants and some small plasmids previously not present in L. lactis 7962 were detected. These transformants were named as L. lactis KL1, KL2, KL3, KL4, or KL5, respectively based on their plasmid profiles. Growth curves of all transformants were similar to that of L. lactis LM0230, but different from that of L. lactis 7962. L. lactis KL5 showed the highest level of resistance to nisin, growing up to 1, 200 IU nisin/ml after 40 hr incubation. Some nisin-sensitive derivatives of KL1 or KL2 were obtained by plasmid curing experiments. The plasmid DNA profiles of the nisin-sensitive KL1 derivatives were apparently the same as that of the KL1. All of the nisin-sensitive KL2 derivatives were plasmid-free, but a nisin-resistant strain with no apparent plasmid was also obtained. These results indicate that the nisin-resistance of the $Nis^r$ transformants is presumably mediated by the chromosomally located gene(s) rather than plasmid-encoded gene(s).

  • PDF

Comparative Study on the Recognition of Face Image Using the KL transform and the Template Matching (KL 변환과 템플릿매칭을 이용한 얼굴 인식 방법)

  • 강환일;송영기;이세영;정요원
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.301-305
    • /
    • 1999
  • 얼굴인식의 방법 중 하나인 전체얼굴에 대한 인식 방법으로, 고유벡터를 이용한 인식 방법과 템플릿 매칭을 이용한 방법의 차이점을 비교 연구한다. 고유벡터를 이용한 방법은 얼굴 영상에 대한 벡터공간을 얻은 후 각 얼굴 영상을 구별할 수 있는 공간에 대한 투영을 통하여 인식에 이용한다. 템플릿 매칭에 기반한 방법은 몇가지 유사도 정의를 이용한 것이다. 또한 얼굴 영상에 대한 전처리 과정이 인식에 끼치는 영향도 분석한다. 본 논문은 두가지의 얼굴 영상 인식기술의 비교를 통하여 얼굴 영상의 인식에 대한 유용한 도구로서 에지영상을 이용한 KL변환 방법이 더 우수함을 보인다.

  • PDF

Human Face Identification using KL Transform and Neural Networks (KL 변환과 신경망을 이용한 개인 얼굴 식별)

  • Kim, Yong-Joo;Ji, Seung-Hwan;Yoo, Jae-Hyung;Kim, Jung-Hwan;Park, Mignon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • Machine recognition of faces from still and video images is emerging as an active research area spanning several disciplines such as image processing, pattern recognition, computer vision and neural networks. In addition, human face identification has numerous applications such as human interface based systems and real-time video systems of surveillance and security. In this paper, we propose an algorithm that can identify a particular individual face. We consider human face identification system in color space, which hasn't often considered in conventional in conventional methods. In order to make the algorithm insensitive to luminance, we convert the conventional RGB coordinates into normalized CIE coordinates. The normalized-CIE-based facial images are KL-transformed. The transformed data are used as the input of multi-layered neural network and the network are trained using error-backpropagation methods. Finally, we verify the system performance of the proposed algorithm by experiments.

  • PDF

Comparative Study on the Recognition of Face Image Using the KL transform and the Template Matching (KT 변환과 템플릿매칭을 이용한 얼굴 인식 방법)

  • 강환일;송영기;이세영;정요원
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.301-305
    • /
    • 1999
  • 얼굴인식의 방법 중 하나인 전체얼굴에 대한 인식 방법으로, 고유벡터를 이용한 인식 방법과 템플릿 매칭을 이용한 방법의 차이점을 비교 연구한다. 고유벡터를 이용한 방법은 얼굴 영상에 대한 벡터공간을 얻은 후 각 얼굴 영상을 구별할 수 있는 공간에 대한 투영을 통하여 인식에 이용한다. 템플릿 매칭에 기반한 방법은 몇가지 유사도 정의를 이용한 것이다. 또한 얼굴 영상에 대한 전처리 과정이 인식에 끼치는 영향도 분석한다. 본 논문은 두가지의 얼굴 영상 인식기술의 비교를 통하여 얼굴 영상의 인식에 대한 유용한 도구로서 에지영상을 이용한 KL변환 방법이 더 우수함을 보인다.

  • PDF

GMM-KL Framework for Indoor Scene Matching (실내 환경 이미지 매칭을 위한 GMM-KL프레임워크)

  • Kim, Jun-Young;Ko, Han-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.61-63
    • /
    • 2005
  • Retreiving indoor scene reference image from database using visual information is important issue in Robot Navigation. Scene matching problem in navigation robot is not easy because input image that is taken in navigation process is affinly distorted. We represent probabilistic framework for the feature matching between features in input image and features in database reference images to guarantee robust scene matching efficiency. By reconstructing probabilistic scene matching framework we get a higher precision than the existing feaure-feature matching scheme. To construct probabilistic framework we represent each image as Gaussian Mixture Model using Expectation Maximization algorithm using SIFT(Scale Invariant Feature Transform).

  • PDF

A transformed input-domain approach to fuzzy modeling-KL transform approch (입력 공간의 변환을 이용한 새로운 방식의 퍼지 모델링-KL 변환 방식)

  • 김은태;박민기;이수영;박민용
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.58-66
    • /
    • 1998
  • In many situations, it is very important to identify a certain unkown system, it from its input-output data. For this purpose, several system modeling algorithms have been suggested heretofore, and studies regarding the fuzzy modeling based on its nonlinearity get underway as well. Generatlly, fuzzy models have the capability of dividing input space into several subspaces, compared to linear ones. But hitherto subggested fuzzy modeling algorithms do not take into consideration the correlations between components of sample input data and address them independently of each other, which results in ineffective partition of input space. Therefore, to solve this problem, this letter proposes a new fuzzy modeling algorithm which partitions the input space more efficiently that conventional methods by taking into consideration correlations between components of sample data. As a way to use correlation and divide the input space, the method of principal component is ued. Finally, the results of computer simulation are given to demonstrate the validity of this algorithm.

  • PDF

Hand posture recognition robust to rotation using temporal correlation between adjacent frames (인접 프레임의 시간적 상관 관계를 이용한 회전에 강인한 손 모양 인식)

  • Lee, Seong-Il;Min, Hyun-Seok;Shin, Ho-Chul;Lim, Eul-Gyoon;Hwang, Dae-Hwan;Ro, Yong-Man
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1630-1642
    • /
    • 2010
  • Recently, there is an increasing need for developing the technique of Hand Gesture Recognition (HGR), for vision based interface. Since hand gesture is defined as consecutive change of hand posture, developing the algorithm of Hand Posture Recognition (HPR) is required. Among the factors that decrease the performance of HPR, we focus on rotation factor. To achieve rotation invariant HPR, we propose a method that uses the property of video that adjacent frames in video have high correlation, considering the environment of HGR. The proposed method introduces template update of object tracking using the above mentioned property, which is different from previous works based on still images. To compare our proposed method with previous methods such as template matching, PCA and LBP, we performed experiments with video that has hand rotation. The accuracy rate of the proposed method is 22.7%, 14.5%, 10.7% and 4.3% higher than ordinary template matching, template matching using KL-Transform, PCA and LBP, respectively.