• Title/Summary/Keyword: KIVA

Search Result 81, Processing Time 0.021 seconds

Fuel Concentration and Flame Temperature Distribution in Model Gas Turbine Combustor with Various Spray Angles (모형가스터빈 연소기에서 분무각 변화에 따른 연료농도 및 화염온도 분포)

  • Hwang, Jin-Seok;Byun, Yong-Woo;Seong, Hong-Gye;Koo, Ja-Ye;Kang, Jeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.1011-1016
    • /
    • 2008
  • Jet-A spray and combustion were numerically analyzed in annular type combustor model using KIVA3V. The combustor geometry have 6 dilute holes. Swirl effect and thermal NO were considered in this investigation to analyze mixing and combustion characteristics. Fuel vapor, flame temperature, NO generation were investigated for various spray angle. As increase of spray angle, Jet-A vapor appeared uniformly in primary zone and evaporation rate was increased. Mixing between fuel vapor and ambient gas was enhanced as increase of spray angle. As a result, high temperature region appeared widely and thermal NO generation rate was increased.

A Numerical Study of the Spray Characteristics of Co-axial Swirl Injector in Liquid Propellant Rocket Engine (액체로켓엔진에서 동축 스월형 분사기의 분무특성에 대한 수치적 고찰)

  • Moon Yoon-Wan;Seol Woo-Seok;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.156-160
    • /
    • 2006
  • This study investigated the characteristics of spray generated by a liquid-liquid co-axial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis[1] was introduced In liquid sheet breakup and Post[2]'s collision model which considers shattering was adopted on the collision model after breakup. Every model was implemented to KIVA[3], which was adopted as solve. To validate the implemented models the cases of high and low injection velocity were calculated respectively and each result agreed well with test results.

  • PDF

Spray and Combustion Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서의 분무 및 연소 특성)

  • Hwang, Jin-Seok;Koo, Ja-Ye;Seong, Hong-Gye;Kang, Jeong-Seek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.381-386
    • /
    • 2007
  • Jet-A spray, evaporation and combustion were numerically analyzed in annular type model combustor using KIVA-3V. Liquid fuel's atomizing was affected by flow field near droplet. When cooling flow was not optimized, SMD was increased, and equivalence ratio was horizontally distributed in combustor's downstream. Flame spread out horizontally and separated in combustors downstream. Flame center was separated by cooling flow. Flame separation made local high temperature in downstream that caused NO increase.

  • PDF

A Study on the Spray, Combustion, and Exhaust Emission Characteristics of Dimethyl-ether (DME) by Experiment and Numerical Analysis (Dimethyl-ether (DME) 연료의 분무, 연소 및 배기 특성에 관한 실험 및 수치해석적 연구)

  • Park, Su-Han;Kim, Hyung-Jun;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.31-37
    • /
    • 2010
  • The aim of this work is to investigate the spray and combustion characteristics of dimethyl-ether (DME) at various injection conditions. The spray characteristics such as spray tip penetration and spray cone angle were experimentally studied from the spray images which obtained from the spray visualization system. Combustion and emissions characteristics were numerically investigated by using KIVA-3V code coupled with Chemkin chemistry solver. From these results, it revealed that DME spray had a shorter spray tip penetration and wider spray cone angle than that of diesel spray due to the low density, low surface tension, and fast evaporation characteristics. At the constant heating value condition, DME fuel showed higher peak combustion pressure and earlier ignition timing, because of high cetane number and superior evaporation characteristics. In addition, the combustion of DME exhausted more $NO_x$ emission and lower HC emission due to the active combustion reaction in the combustion chamber. The result shows that DME had a little soot emission due to its molecular structure characteristics with no direct connection between carbons.

A Study of Effect of Droplet Distribution Functions in Modeling of Pressure-Swirl Atomizer (압력 선회 분사기 분무모델에서 액적분포함수 영향 고찰)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.117-120
    • /
    • 2007
  • This study investigated the spray modeling of the pressure-swirl atomizer installed in liquid rocket engine and the effect of drop distribution function especially. The $X^2$, originally implemented to KIVA, Rosin-Rammler and modified Rosin-Rammler distribution functions were investigated theoretically and compared to each other. Also, they were applied to pressure-swirl atomizer similar to the injector installed in liquid rocket engine to evaluate the feasibility for LRE injector. Among the distribution functions, original Rosin-Rammler distribution function was the most compatible with predicting the spray characteristics of pressure-swirl atomizer installed in liquid rocket engine.

  • PDF

Numerical Analysis of Performance and Emission Characteristics according to Equivalence Ratio and Ignition Time of LNG Engine (LNG 엔진에서 당량비와 점화시기에 따른 엔진의 성능과 배기 특성에 관한 수치 해석적 연구)

  • Lee, Ziyoung;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.49-51
    • /
    • 2015
  • In this research, engine performance and emission variation according to equivalence ratio and ignition time is calculated by validated analysis model. LNG engine ignite by spark plug and spark ignition modeled using DPIK model and G-equation that modeled initial flame surface called kernel and velocity and position of flame front. Engine pressure and emission was validated with experimental data.

  • PDF

Spray and Combustion Characteristics of Liquid Jet in Cross Flow (횡단류에 분사되는 액체 제트의 분무 및 연소 특성)

  • Lee, Gwan-Hyeong;Kim, Du-Man;Gu, Ja-Ye;Hwang, Jin-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.48-58
    • /
    • 2006
  • The spray and combustion characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which may be used to generate numerical solutions to spray and chemical reactive fluid problem in three space dimensions and modified to be suitable for simulating liquid jet ejected into the cross flow. Wave model and Kelvin- Helmholtz(KH) /Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Penetration length increases as flow velocity decreases and injection velocity increases. Numerical error increases as inflow velocity increases. The results of flame propagation contour in combustion chamber and local temperature distribution, combustion emissions were obtained.

Spray-atomization Characteristics of Biodiesel Fuel with Multiple Injection (다단분사를 적용한 바이오디젤 연료의 분무 미립화 특성)

  • Park, Su-Han;Kim, Hyung-Jun;Kim, Se-Hun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.40-47
    • /
    • 2010
  • This study deals with the investigation about the effect of the pilot and split injection strategies on the spray-atomization characteristics of biodiesel fuel derived from a soybean oil. Experimental results were compared with the calculation results obtained from the numerical analysis. Fuel properties of biodiesel according to the variation of the fuel temperature were inserted to the fuel library in the KIVA code. The amount of fuel injection is divided into equal mass for each split and main injection. In this work, the pilot injection strategy can be achieved by the amount of fuel injection shortly before the start of the main injection. A spray tip penetration, radial distance and spray area were measured for the analysis of macroscopic spray characteristics. In addition, the local and overall droplet size distribution were calculated by using KIVA-3V code to study the effect of split and pilot injection on the atomization performance under high ambient pressure. From these studies, the experimental results showed the multiple injection induced the decrease of the spray tip penetration due to the reduction and division of the spray momentum compared to single injection. In the atomization performance, the droplet size increased in the case of the multiple injection a little. Moreover, the SMD slightly increased as the fuel droplets goes through the axial direction. The spray behavior of numerical results were well predicted the experimental multiple spray characteristics of biodiesel fuel.

Comparison of GDI Spray Prediction by Hybrid Models (혼합모델에 의한 GDI 분무예측의 비교)

  • Kang, Dong-Wan;Hwang, Chul-Soon;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1744-1749
    • /
    • 2003
  • The purpose of this study is to obtain the information about the development process of GDI spray. To acquire the characteristics of GDI spray, the computational study of hollow cone spray for high-pressure swirl injectors was performed. Several hybrid models using the modified KIVA code have been introduced and compared. WB model and LISA model were used for the primary breakup, and DDB and APTAB models were used for secondary breakup. To compare with the calculated results, the experimental results such as cross-sectional images and SMD distribution were acquired by laser Mie scattering technique and Phase Doppler Analyzer respectively. The results show that LISA+APTAB hybrid model has the best prediction for spray formation process.

Numerical Study for Spray Characteristics of Liquid Jet in Cross Flow with Variation of Injection Angle (분사각 변화에 따른 횡단류에 분사되는 액체제트의 분무특성에 대한 수치적 연구)

  • Lee Kwan-Hyung;Ko Jung-Bin;Koo Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.161-169
    • /
    • 2006
  • The spray characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which was modified to be suitable for simulating liquid jet ejected into cross flow. Wave model and Kelvin-Helmholtz(KH)/Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Numerical results were compared with experimental data in order to verify the reliability of the physical model. Liquid jet penetration length, volume flux, droplet velocity profile and SMD were obtained. Penetration length increases as flow velocity decreases and injection velocity increases. From the bottom wall, the SMD increases as vertical distance increases. Also the SMD decreases as injection angle increases.