• Title/Summary/Keyword: KINEMATICS ANALYSIS

Search Result 633, Processing Time 0.023 seconds

The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.4 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • Background: To determine the influence of lifting speed and type on peak and cumulative back compressive force (BCF) and shoulder moment (SM) loads during symmetric lifting. Another aim of the study was to compare static and dynamic lifting models. Methods: Ten male participants performed a floor-to-shoulder, floor-to-waist, and waist-to-shoulder lift at three different speeds [slow (0.34 m/s), medium (0.44 m/s), and fast (0.64 m/s)], and with two different loads [light (2.25 kg) and heavy (9 kg)]. Two-dimensional kinematics and kinetics were determined. A three-way repeated measures analysis of variance was used to calculate peak and cumulative loading of BCF and SM for light and heavy loads. Results: Peak BCF was significantly different between slow and fast lifting speeds (p < 0.001), with a mean difference of 20% between fast and slow lifts. The cumulative loading of BCF and SM was significantly different between fast and slow lifting speeds (p < 0.001), with mean differences ${\geq}80%$. Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

A Kinematics Analysis of Inward 1½ Somersault in Platform dives (플랫폼 다이빙 뒤로서서 앞으로뛰기 1½ 회전동작의 운동학적 분석)

  • Lee, Jong-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.139-149
    • /
    • 2006
  • This study is to analyze the kinematic variables of inward $1{\frac{1}{2}}$ somersault in platform diver. For the manner, 3 people form the national diving team in the year 2000were chosen as the subjects and two S-VHS video cameras set in 60frames/sec were used for recording their motions. Coordinated raw positions data through digitizing are smoothing by butter-worth's low-pass filterin method at a cut off frequency 6.0Hz. and the direct linear transformation(DLT) method was employed to obtain 3-D position coordinates. The conclusions were as follows. However, horizontal distance which is the change of the COG, form the point of the jump to the point of Event 3 where the player is out of the board range completely, Subject B showed 105.1cm and 71.1cm of the vertical distance which are shorter horizontal distance and higher vertical distance, thus, took a great advantage of the position to prepare for the entry. Therefore, if a player takes higher position by speeding up the vertical velocity at the moment of the jumping off the board, and stays in the air longer, the player can have more time to show his skill. Because of the use of the characteristics of the inward somersault, keeping the safe distance form the board is important but in order to higher the completeness, it is ideal to keep the horizontal distance little over 100cm. Also, the angles of shoulder and elbow from Event 1 to 4, depending on swing of the arms, motions in the air, getting ready for the entry, showed some difference individual by individual, according to the velocity of the thigh and shank showed much difference while getting ready and take-off, and it's because of the individual's different bending and straightening for horizontal and vertical distance.

Analysis of golf putting for Elite & Novice golfers Using Jerk Cost Function (저크비용함수를 이용한 골프 숙련자와 초보자간의 퍼팅 동작 분석)

  • Lim, Young-Tae;Choi, Jin-Sung;Han, Young-Min;Kim, Hyung-Sik;Yi, Jeong-Han;Jun, Jae-Hun;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • The purpose of this study was to identify critical parameters of a putting performance using jerk cost function. Jerk is the time rate of change of acceleration and it has been suggested that a skilled performance is characterized by decreased jerk magnitude. Four elite golfers($handicap{\leq}2$) and 4 novice golfers participated in this study for the comparison. The 3D kinematic data were collected for each subject performing 5 trials of putts for each of these distances (random order): 1m, 3m, 5m The putting stroke was divided into 3 phases such as back swing. down swing and follow-through. In this study, it was assumed that there exist smoothness difference between elite and novice golfers during putting. The distance and jerk-cost function of Putting stroke for each phase were analyzed Results showed that there was a significant difference in jerk cost function at putter toe (at media-lateral direction) and at the center of mass between two groups by increasing putting distance. From these it could be concluded that jerk can be used as a kinematic parameter for distinguishing elite and novice golfers.

3-D Kinematics Comparative Analysis of Penalty Kick between Novice and Expert Soccer Players (축구 페널티킥에서 초보자와 숙련자의 3차원 운동학적 비교)

  • Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.13-24
    • /
    • 2005
  • The purpose of this study was to compare kinematic data between experts and novices, and identify difference kinematic parameters changing direction to kick in penalty kick of soccer play. Novice subjects were 5 high school students Who has never been experienced a soccer player, and expert subjects were 5 competitive high school soccer players. The 3-d angle was calculated by Euler's Angle by inertial axis and local axis with three-dimensional cinematography. Kinematic parameters in this study consisted of angles of knee joints, hip joints, lower trunk and upper trunk when the support foot was contacted on ground and kicking foot impacted the ball. The difference of angle of knee joints in the flexion/extension was insignificantly showed below $4{\sim}9^{\circ}$ in groups and directions of ball at the time of support and impact. But the difference of angle of hip joint was significant in groups and directions of ball at the time of support and impact. Specially the right hip joint of experts were more flexed about $12^{\circ}$($43.99{\pm}6.17^{\circ}$ at left side, $31.87{\pm}4.49^{\circ}$ at right side), less abducted about $10^{\circ}$ ($-31.27{\pm}4.49^{\circ}$ at left side, $-41.97{\pm}6.67^{\circ}$ at right side) at impact when they kicked a ball to the left side of goalpost. The difference of amplitude angle in the trunk was significantly shown at upper trunk not lower trunk. The upper trunk was external rotated about $30^{\circ}$ (novice' angle was $-16.3{\pm}17.08^{\circ}$, expert's angle was $-43.73{\pm}12.79^{\circ}$) at impact. Therefore the significant difference of kinematic characteristics could be found at the right hip joint and the upper trunk at penalty kick depending on the direction of kicking.

Effect of Intentional Draw & Fade Shots on Golf Swing Mechanics (의도적인 드로우 샷과 페이드 샷이 골프 스윙 역학에 미치는 영향에 관한 연구)

  • Sohn, Jee-Hoon;Ryue, Jae-Jin;Lee, Ki-Kwang;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.149-154
    • /
    • 2010
  • Intentional draw and fade shots could be good weapons for lowering golf score. But how to make such shots? To investigate deterministic variables generating different projectile paths of shots in square stance was the purpose of this study. Ten right-handed male collegiate athletes, showing 1.3 of averaged handicap, participated in this study. They were asked to intentionally perform three different shots such as the straight shot(control condition), draw shot, and fade shot. Swing path, pelvis rotation angle, thorax rotation angle and left forearm supination angle were determined for dependent variables on impact event at each trial. For statistical analysis one-way repeated measures ANOVA were used. The results showed that swing path was one of main factor making differences among three kind of shots. Straight shot vs. Draw shot, Straight shot vs. Fade shot and Draw shot vs. Fade shot showed differences on swing path. And left forearm supination angle revealed significant difference between draw shot and fade shot, showing a significant larger angle of draw shot than fade shot. No other significant difference was detected for the other variables. We found that the shot characteristics were influenced primarily by swing path and left forearm supination angle.

Analysis of Racket Head Velocity of Tennis Forehand Stroke by Stance Patterns (스탠스 유형에 따른 테니스 포핸드 스트로크의 라켓헤드 속도분석)

  • Seo, Kuk-Woong;Kang, Young-Teak;Lee, Kyung-Soon;Seo, Kook-Eun;Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.53-60
    • /
    • 2007
  • Recently tennis techniques has been changed in stance patterns. Stance is consist of square stance, open stance and semi-open stance. The purpose of this study was to analyze the kinematics variables of racket head velocity during forehand stroke by stance patterns. Eight high school tennis players were chosen for the study who use semi western grip right-handed person more than career 7 years. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, open and semi-open stance. The results showed that racket head velocity significant difference was not observed in stance types between swings at impact. Y and Z components of racket head velocity for horizontal and vertical swing at second prior to impact and at impact were that y components velocity was faster horizontal swing than vertical swing and z components velocity was later horizontal swing than vertical swing. Statistically significant variable to racket head velocity and Pearson's correlation were drawn as follows. 1. Z components of racket head velocity in square stance was significant correlation by right knee joint. 2. Y components of racket head velocity in semiopen stance was significant correlation by left hip joint. 3. Y components of racket head velocity in open stance was significant correlation by left ankle joint.

Kinematic Analysis of Lower Extremity and Evaluation of Skill of Skier Using Parameters of Inertial Sensors During Ski Simulator Exercise (스키 시뮬레이터 운동 시 하지 운동특성 분석 및 관성센서 파라미터를 이용한 스키 숙련도 평가)

  • Kim, Jungyoon;Ahn, Soonjae;Park, Sunwoo;Shin, Isu;Kim, Gyoosuk;Kim, Youngho
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • In this study, joint angles of the lower extremity and inertial sensor data such as accelerations and angular velocities were measured during a ski simulator exercise in order to evaluate the skill of skiers. Twenty experts and twenty unskilled skiers were recruited for the study. All expert skiers held the certificates issued by the Korea Ski Instructors Association. A three-dimensional motion capture system and two inertial sensors were used to acquire joint movements, heel acceleration and heel angular velocity during ski simulator exercises. Pattern variation values were calculated to assess the variations in ski simulator motion of expert and unskilled skiers. Integral ratio of roll angular velocity was calculated to determine the parallel alignment of the two feet. Results showed that ski experts showed greater range of motion of joint angle, peak-to-peak amplitude(PPA) of heel acceleration and PPA of heel angular velocity than unskilled skiers. Ski experts showed smaller pattern variations than unskilled skiers. In addition, the integral ratio of roll angular velocity in ski experts was closer to 1. Inertial sensor data measurements during the ski simulator exercises could be useful to evaluate the skill of the skier.

The Current-Position Cascade PID Control of Delta-type Parallel Robot (델타 로봇의 전류-위치 Cascade PID 제어)

  • Paek, Dong-Hee;Kim, Yeong-Dae;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.273-284
    • /
    • 2020
  • This paper proposes a method of designing and controlling delta robots with low-cost DC motors, which are widely used in the automation process. Simulation was performed by interpreting the mechanics and dynamics of the delta robot, and based on this analysis, low-cost DC motor was selected. Experiments were conducted to obtain characteristic values of motors and the current-position cascade control system was designed and implemented. In order to verify the feasibility of the proposed system, the experiment to check that the end-effector of the delta robot follows the target path was progressed. Through the experiment, the limitations of using low-cost motors were overcome by designing compensation algorithms and the performance of the position control was verified.

An Analysis of the H Emission Line Profiles of the Symbiotic Star AG Peg (공생별 AG Peg의 H 방출선 윤곽 분석)

  • Lee, Kanghwan;Lee, Seong-Jae;Hyung, Siek
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The symbiotic star AG Peg is a nebulous binary system that consists of giant star (GS) and white dwarf (WD). We investigated the HI Balmer emission lines of the symbiotic nova AG Peg, observed in 1998, 2001, and 2002 at Lick Observatory. The $H{\alpha}$ and $H{\beta}$ line profiles consist of blue-shifted, red-shifted, and broad components of which intensities and width showed notable changes. The HI emission line profiles that represent the kinematics of the gaseous nebula appear to be mainly from an accretion disk in relatively large radius from the WD. Considering the line of an observer's sight, both GS and WD are located at the sky plane side by side during the 1998 observation, while the WD is in front of GS during 2002 but the WD in rear during 2001. Such a relative position and the spectral line intensity variation imply that a fairly constant outflow occurs into WD from GS which caused to maintain the rotating thick accretion disk structure responsible for the observed spectral lines.

Generation of Motor Velocity Profile for Walking-Assistance System Using Humanoid Robot Model (휴머노이드 로봇 모델을 이용한 보행재활 훈련장치의 견인모터 속도 파형 생성)

  • Choi, Young-Lim;Choi, Nak-Yoon;Park, Sang-Il;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.631-638
    • /
    • 2012
  • This work proposes a new method to generate velocity profile of a traction motor equipped in a rehabilitation system for knee joint patients through humanoid robot simulation. To this end, a three-dimensional full-body humanoid robot model is newly constructed, and natural human gait is simulated by applying to it reference joint angle trajectories already published. Linear velocity is derived from distance data calculated between the positions of a thigh band and its traction motor at every sampling instance, which is a novel idea of this paper. The projection rule is employed to kinematically describe the humanoid robot because of its high efficiency and accuracy, and measured joint trajectories are used in simulating human natural gait referring to Winter's book. The attained motor velocity profile for a certain position in human body will be applied to our walking-assistance system which is implemented with a treadmill system.