• Title/Summary/Keyword: KINEMATIC

Search Result 2,920, Processing Time 0.024 seconds

The Kinematic Analysis of Kasamatus in Vault (도마종목의 Kasamatsu 기술동작 분석)

  • Lee, Soon-Ho;Back, Jin-Ho;Kim, Young-Sun;Kong, Tae-Ung
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.1-11
    • /
    • 2005
  • The study were to assess technical factors between the high score group and the low score group, from the subjects of 8 male national gymnasts, and to analyze the kinematical characteristic and main technical cause on technique of Kasamatsu movement on Vault. The result of this study is this. In case of horse contact time the high score group was swifter than low score group, and there was significant difference between the high score group and the low score group(<.01). On high score group the time of taking on from horse showed shorter than that of taking off from horse, while of the low score group the time of taking on the horse was similar to that of taking off from horse on the average. And in time of pre-flight the high score group on average the was 0.16sec shorter times than the low score group, and so there was significantly difference between groups(<.05). Also It is a characteristic that the high score group was short in horse contact time and longer in post-flight. In the horizontal distance of post-flight, the high score group was 0.11m longer than the low score group and there was significantly statistic difference between groups(<.05). In the vertical height of the cog in Post-flight's phrase, the high score group was 0.15m higher than the low score group and there was significantly statistic difference between groups(.<01). The horizontal velocity and vertical velocity in the event of taking on and off Beat board and Vault weren't significantly statistic differences between two groups. In the slow-down of average horizontal velocity during keeping contact with the beat board, the high score group was larger than the low score group. And in an increased average vertical velocity during keeping contact with the beat board, the high score group was even larger than the low score group. In the projectile angle of cog in taking off the beat board, 40.2deg., the angle of low score group and 39.5deg., the angle of high score group are nearly alike. In the projectile angle of cog in taking off the beat, the high score group showed 1.6Wt larger on average than the low score group. However the average reaction force on the board and Vault wasn't almost different between two groups, showed 0.3~0.6Wt larger in the high score group.

The Biomechanical Analysis of the Driver Swing of High School female Golfers (고교 여자 골프선수의 드라이버 스윙에 대한 운동역학적 분석)

  • Lee, Kyung-Il;Lee, Hee-Kyung;Bae, Jong-Won;Chung, Jin-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.273-286
    • /
    • 2009
  • The objective of this research is to evaluate both quantitative analysis and qualitative analysis by comparing vital variable factors of the golf swing successes and the failures. At the moment of swing, each body segment and the movement of the club as well as kinematical parameters were produced by utilizing the 3-D swing analysis for the high school female golfers. As kinematical parameters, it analyzes the 3-D analysis and ground reaction force about the location change, velocity and angle. The 3-D swing analysis and ground reaction force location change, velocity and angle are analyzed for Kinematical parameters. As a result, the stable swing is maintained by club head showing very few front-back movement (X) when the address and the top swing. Also, the center of mass velocity contributes to the momentum increase by showing very rapid velocity when successful comparing with when failed at the time of top swing of left-right(Y) and it is thought that by lessening the cocking angle when successful from the top swing to the impact, it influences the linear velocity increase and has a good effect on a non-distance increase. It shows that Ground reaction force (GRF) is examined by showing the stable approval rating in a front-back(X) direction and left-right(Y) and connected to a successful swing.

Kinematical Analysis of Basket with 1/2 Turn to Handstand on Parallel Bars (평행봉 Basket with 1/2 Turn to Handstand 기술 분석)

  • Back, Jin-Ho;Park, Jong-Chul;Lee, Yong-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.165-174
    • /
    • 2007
  • The subject of this study was male apparatus gymnastics athlete who had scored high points doing basket with 1/2 turn on parallel bars. Then 3D motion analysis were used to calculate & analyse kinematic variables of Basket with 1/2 turn to Handstand. 1. The total average time spent for Basket with 1/2 turn took $2.16{\pm}.08sec$, at the downward upward phase took $.58{\pm}0.00sec$, $.23{\pm}.00sec$, at flight phase took $.28{\pm}.01sec$, at connected area phase took $.72{\pm}0.21sec$, at rotation area phase took $.35{\pm}.14sec$. To have a successful performance, there should be faster speed and velocity to rotate at the downward upward phase, then the upward velocity and height must be used adequately. Moreover, the speed must be faster at the flight connect phase to stabilize Center of Mass(CM) for the body, and must secure more time at the rotation area to have more stable performance. 2. After handstand on parallel bars while moving CM to right hand side, and It must be performed with big and magnificent performance with putting both hand's center to far away from the parallel bars. 3. Furthermore, CM must be moved fast from downwards to right hand side, and CM must be moved fast in vertical movement at upward and flight phase to avoid CM from moving back and forth, and left and right. 4. At downwards, the subject must rotate as bis as possible using hip-joint as wide as possible and at upwards, must put his body to vertical to have stable performance. While rotating or turning, it is better to do with bigger shoulder angle and have to make sure that trunk angle must be not scattered. To perform better and more positive in basket with 1/2 turn on parallel bars, the centrifugal force must be used big and fast at downward, and at upward and flight phase, downward movement must change to vertical movement as soon as possible while turning movement must happen at handstand position. Time spent must be shorten at connected area to stabilize CM and turning must be natural as possible while securing the necessary time of movement to well-balanced. Also, the body must be vertically closed from the ground.

The Kinematic Analysis of Handspring Salto Forward Piked (핸드스프링 몸접어 앞공중돌기동작의 운동학적 분석)

  • Kwon, Oh-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.145-153
    • /
    • 2007
  • The purpose of this study is to compare and analyze the phase-by-phase elapsed time, the COG, the body joint angle changes and the angular velocities of each phase of Handspring Salto Forward Piked performed by 4 college gymnasts through 3D movement analysis program. 1. The average elapsed time for each phase was .13sec for Phase 1, .18sec for Phase 2, .4sec for Phase 3, and .3sec for Phase 5. The elapsed time for Phase 1 to Phase 3 handspring was .35sec on average and the elapsed time for Phase 4 to Phase 5 handspring salto forward piked was .7sec on average. And so it showed that the whole elapsed time was 1.44sec. 2. The average horizontal changes of COG were 93.2 cm at E1, 138. 5 cm at E2, 215.7 cm at E3, 369.2 cm at E4, 450.7 cm at E5, and 553.1 cm at E6. The average vertical changes of COG were 83.1 cm at E1, 71.3 cm at E2, 78.9 cm at E3, 93.7 cm at E4, 150.8 cm at E5, and 97.2 cm at E6. 3. The average shoulder joint angles at each phase were 131.6 deg at E1, 153.5 deg at E2, 135.4 deg at E3, 113.4 deg at E4, 39.6 deg at E5, and 67.5 deg at E6. And the average hip joint angles at each phase were 82.2 deg at E1, 60 deg at E2, 101.9 deg at E3, 161.2 deg at E4, 97.7 deg at E5, and 167 deg at E6. 4. The average shoulder joint angular velocities at each phase were 130.9deg/s E1, 73.1 deg/s at E2, -133.9 deg/s at E3, -194.4 deg/s at E4, 29.4 deg/s at E5, and -50.1 deg/s at E6. And the average hip joint angular velocities at each phase were -154.7 deg/s E1, -96.5 deg/s at E2, 495.9 deg/s at E3, 281.5 deg/s at E4, 90.3 deg/s at E5, and 181.7 deg/s at E6. The results shows that, as for the performance of handspring salto forward piked, it is important to move in short time and horizontally from the hop step to the point to place the hands on the floor and jump, and to stretch the hip joints as much as possible after the displacement of the hands and to keep the hip joints stretched and high in the vertical position at the takeoff. And it is also important to bend the shoulder joints and the hip joints fast and spin as much as possible after the takeoff, and to decrease the speed of spinning by bending he shoulder joints and the hip joints quickly after the highest point of COG and make a stable landing.

Permeation Properties of Single Gases ($N_2$, $O_2$, $SF_6$, $CF_4$) through PDMS and PEBAX Membranes (PDMS와 PEBAX 분리막을 통한 단일기체($N_2$, $O_2$, $SF_6$, $CF_4$) 투과 특성)

  • Kim, Hanbyul;Lee, Minwoo;Park, Wankeun;Lee, Soonjae;Lee, Hyunkyung;Lee, Sanghyup
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • In this study, we investigated permeation of single gas ($N_2$, $O_2$, $CF_4$, and $SF_6$) through flat sheet membrane composed of PDMS (poly-dimethylsiloxane) and PEBAX (polyether block amides). Gas permeation experiment was performed with various feed pressure. Permeability was estimated using permeation flux measured by continuous-flow technique. The permeability of gases except $SF_6$ in PDMS were decreased with the upstream pressure increased. $SF_6$ is much more permeable than $CF_4$, which is due to higher critical temperature of $SF_6$. The permeability decreased in the following order: $O_2$ > $N_2$ > $SF_6$ > $CF_4$. On the other hand, the permeability of gases in PEBAX followed the order: $O_2$ > $N_2$ > $CF_4$ > $SF_6$ which are opposite of the order of kinematic diameter (${\AA}$)($SF_6$ > $CF_4$ > $N_2$ > $O_2$). The $SF_6/CF_4$ pure gas selectivity in PDMS was 2.1 at 0.7 MPa.

Exploring the Use of Melody During RAS Gait Training for Adolescents with Traumatic Brain Injury: A Case Study (외상성 뇌손상 청소년 대상 리듬청각자극(RAS) 보행 훈련 시 선율 적용 사례)

  • Park, Hye Ji
    • Journal of Music and Human Behavior
    • /
    • v.12 no.2
    • /
    • pp.19-36
    • /
    • 2015
  • The purpose of this study was to examine the effects of rhythmic auditory stimulation (RAS) on gait parameters, with and without the presence of a melody, for adolescents with traumatic brain injury (TBI). Three adolescents with TBI received a total of ten individual RAS training sessions. At pre and posttest, spatiotemporal parameters including cadence, velocity and kinematic parameters were measured using the VICON 370 Motion Analysis System. The results showed no significant difference in gait velocity between the two conditions, thus the presence of the melody condition did not impact the outcome of RAS gait training. On the other hand, all participants showed improvement in gait function after RAS training. The cadence, velocity, stride length, and symmetry were increased and the stride time was reduced after training. The motion analysis demonstrated that the movement patterns of hip and knee joints improved, as they were more similar to normal gait, which indicates that the walkings tance became more stable. The research findings indicate that rhythm is the primary factor in mediating gait functions via RAS training. This study also supports that RAS training can effectively improve the gait function for adolescents with TBI.

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.

Pectinase-treated Panax ginseng protects against chronic intermittent heat stress-induced testicular damage by modulating hormonal and spermatogenesis-related molecular expression in rats

  • Kopalli, Spandana Rajendra;Cha, Kyu-Min;Lee, Sang-Ho;Ryu, Ji-Hoon;Hwang, Seock-Yeon;Jeong, Min-Sik;Sung, Jong-Hwan;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.578-588
    • /
    • 2017
  • Background: Elevated testicular temperature disrupts spermatogenesis and causes infertility. In the present study, the protective effect of enzymatically biotransformed Panax ginseng Meyer by pectinase (GINST) against chronic intermittent heat stress-induced testicular damage in rats was investigated. Methods: Male Sprague-Dawley rats (4 wk old, 60-70 g) were divided into four groups: normal control (NC), heat-stress control (HC), heat-stress plus GINST-100 mg/kg (HG100), and heat-stress plus GINST-200 mg/kg (HG200) treatment groups. Each dose of GINST (100 mg/kg and 200 mg/kg) was mixed separately with a regular pellet diet and was administered orally for 24 wk. For inducing heat stress, rats in the NC group were maintained at $25^{\circ}C$, whereas rats in the HC, HG100, and HG200 groups were exposed to $32{\pm}1^{\circ}C$ for 2 h daily for 6 mo. At week 25, the testes and serum from each animal were analyzed for various parameters. Results: Significant (p < 0.01) changes in the sperm kinematic values and blood chemistry panels were observed in the HC group. Furthermore, spermatogenesis-related molecules, sex hormone receptors, and selected antioxidant enzyme expression levels were also altered in the HC group compared to those in the NC group. GINST (HS100 and HS200) administration significantly (p < 0.05) restored these changes when compared with the HC group. For most of the parameters tested, the HG200 group exhibited potent effects compared with those exhibited by the HG100 group. Conclusion: GINST may be categorized as an important medicinal herb and a potential therapeutic for the treatment of male subfertility or infertility caused by hyperthermia.

3D Pose Estimation of a Human Arm for Human-Computer Interaction - Application of Mechanical Modeling Techniques to Computer Vision (인간-컴퓨터 상호 작용을 위한 인간 팔의 3차원 자세 추정 - 기계요소 모델링 기법을 컴퓨터 비전에 적용)

  • Han Young-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.4 s.304
    • /
    • pp.11-18
    • /
    • 2005
  • For expressing intention the human often use body languages as well as vocal languages. Of course the gestures using arms and hands are the representative ones among the body languages. Therefore it is very important to understand the human arm motion in human-computer interaction. In this respect we present here how to estimate 3D pose of human arms by using computer vision systems. For this we first focus on the idea that the human arm motion consists of mostly revolute joint motions, and then we present an algorithm for understanding 3D motion of a revolute joint using vision systems. Next we apply it to estimating 3D pose of human arms using vision systems. The fundamental idea for this algorithm extension is that we may apply the algorithm for a revolute joint to each of the revolute joints of hmm arms one after another. In designing the algorithms we focus on seeking closed-form solutions with high accuracy because we aim at applying them to human computer interaction for ubiquitous computing and virtual reality.

A Potential-Based Panel Method for the Analysis of A Two-Dimensional Super-Cavitating Hydrofoil (양력판(揚力板) 이론(理論)에 의(依)한 2차원(次元) 수중익(水中翼)의 초월(超越) 공동(空洞) 문제(問題) 해석(解析))

  • Y.G. Kim;C.S. Lee;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.159-173
    • /
    • 1991
  • This paper describes a potential-based panel method formulated for the analysis of a super-cavitating two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring thats the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lilting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged. Characteristics of iteration and discretization of the present numerical method are much faster and more stable than the existing nonlinear theories. The theory shows good correlations with the existing theories and experimental results for the super-cavitating flow. In the region of small angles of attack, the present prediction shows and excellent comparison with the Geurst's linear theory. For the long cavity, the method recovers the trends of the Wu's nonlinear theory. In the intermediate regions of the short super-cavitation, the method compares very well with the experimental results of Parkin and also those of Silberman.

  • PDF