• Title/Summary/Keyword: KIA Motors

Search Result 197, Processing Time 0.023 seconds

Optimization of Processing Conditions and Mechanical Properties in Polymer Nanocomposite (고분자 나노복합재료의 가공조건 및 물성 최적화)

  • Nam, Byeong-Uk;Hong, Chae-Hwan;Hwang, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2007
  • Nanocomposites are used as a new class of polymer system and many researchers have been interested in the clay nanocomposite because of its good mechanical properties, heat resistance, flame retardancy, and barrier property. Modified layered silicates as fillers are dispersed at a nanometer-level within a polymer matrix and then new extraordinary properties are observed. In this study, polypropylene/clay nanocomposites were prepared in a twin screw extruder by the melt compounding method. In order to increase the compatibility of PP with the clay, the MAPP was used as a compatibilizer. And organic modified clays were used as a nanometric filler during the melt extrusion. Through the analysis of SAXS, WAXS, the dispersion of clay was investigated. These nanocomposites compared with a neat polypropylene/talc composite have high modulus, low toughness, and reduced shrinkage at the stable dispersion.

Polyurethane Flexible Foam for Automotive Seat Cushion Having Both Superior Static and Dynamic Properties (우수한 정적, 동적 특성을 보이는 자동차 시트용 폴리우레탄 발포체)

  • Hong, Chae-Hwan;Back, Han-Sung;Kim, Kyung-Man;Kim, Sung-Yoon;Choi, Sok-Min;Hwang, Tae-Won
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • Polyurethane flexible foams have been widely used for automotive seat cushions because of their excellent performance. It has been required so far to reduce the density of seat cushion foam. However, recently, improving the riding comfort of seat cushions becomes more important. With regard to riding comfort, we investigated the improvement of static properties such as the ball rebound property and the hysteresis loss. We also studied the vibration characteristics, which are well known as an important factor to affect the comfort performance during driving.

Synthesis of Multi-walled Carbon Nanotube/Poly(ethylene oxide) Hybrids (다중벽 탄소나노튜브/폴리(에틸렌 옥사이드) 복합체 합성)

  • Hong, Chae-Hwan;Han, Do-Suk;Nam, Byeong-Uk
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.198-201
    • /
    • 2010
  • We have worked a surface modification to release a strong agglomeration of multi-walled carbon nanotube(MWCNT) and a incorporation of hydrophilic polymer to improve compatibility between MWCNT and polymers. Carboxylated MWCNT was easily obtained by acid treatment and the carboxylate was converted to acylchloride by thionyl chloride. Then, we tried one more synthesizing routes to achieve covalent bonds with poly(ethylene oxide) having amine end groups of low molecular weight. We measured the polymer content on the surface of MWCNT by TGA and observed increased diameter of MWCNT by SEM and TEM analysis.

Tribological Properties of C-SiC Brake Discs with Surface Modifications (세라믹 디스크의 표면 개질에 따른 마찰 마모 특성)

  • Jang, Ho;Kim, Ki-Jung;Hwang, Hee-Jeong;Kim, Seong-Jin;Park, Hong-Sik
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.163-169
    • /
    • 2008
  • Tribological properties of ceramic brake discs were investigated using a commercial friction material. The discs were manufactured by liquid silicon infiltration (LSI) into a C-C preform. The disc surface was modified by two different methods, producing sliding surfaces with chopped carbon fibers and carbon felt. In addition, the composition of the surface was also changed. Friction characteristics of the discs were examined using a 1/5 scale dynamometer. Results showed that the type and composition of the disc surface significantly affected the level of braking effectiveness and high temperature brake performance. The discs with felt surfaces showed higher friction levels than those with chopped fiber surfaces and SiC tended to increase the friction level while C lowered the friction coefficient. The ceramic disc was more sensitive to the deceleration rate than gray iron, showing high speed sensitivity.

Concentration Effects on Improved Mechanical Properties of Chopped Kenaf Fiber Filled Polypropylene Composite (케냐프섬유로 강화된 PP복합재료내의 섬유의 함량이 기계적특성 향상에 미치는 효과)

  • Oh, Jeong-Seok;Lee, Seong-Hoon;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • The effects of chopped kenaf fiber concentration on mechanical property of polypropylene (PP) composite are investigated. The addition of kenaf increased the tensile strength, flexural modulus, impact strength, specific gravity, and HDT, while decreased the elongation%, flexural strength, and melt flow index. The increase of mechanical properties is due to increased surface area contacting between fiber and polymer matrix and fiber-fiber interaction. Volatile extractives in the kenaf seemed to decrease the interfacial adhesion between kenaf surface and PP.

Effect of Residual Stress on Fatigue Strength in Resistance Spot Weldment (저항 점 용접부의 피로강도에 미치는 잔류응력의 영향)

  • Yang, Yeong-Su;Son, Gwang-Jae;Jo, Seong-Gyu;Hong, Seok-Gil;Kim, Seon-Gyun;Mo, Gyeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1713-1719
    • /
    • 2001
  • Estimation of fatigue strength on the spot welded joint is very Important for strength design of spot welded steed sheet structures. In this paper, the effect of residual stress on the fatigue life of resistance spot weldment was studied. Residual stress fields of weldment were calculated by using thermo elastic plastic finite element analysis and equivalent fatigue stress considering residual stress effect was obtained. And then we predicted fatigue life, which included the effect of the residual stresses and the actual loading stresses. The calculation and experimental results were in good agreement. Therefore, the proposed calculated model can be considered to be sufficiently powerful for the prediction of fatigue life.

Evaluation of Haptic Seat for Vehicle Navigation System (자동차 네비게이션 시스템을 위한 햅틱 시트의 평가에 관한 연구)

  • Chang, Won-suk;Kim, Seok-Hwan;Pyun, Jong-Kweon;Ji, Yong-Gu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.625-629
    • /
    • 2010
  • This study has confirmed that subjective positive and negative aspects a driver feels by applying haptic seat on a vehicle to substantiate vehicle navigation system. Our experiment with total twenty subjects provides that the reaction time (RT) is superior in haptic interface than visual or auditory interface but subjective satisfaction, which subjects feel, and workload is less low in a simulator environment. Although, the difference of individuals and unfamiliarity is relatively high inasmuch as the experiment of absolutely new technology, but overall satisfaction of haptic seat is high. The result of study provides some consideration and direction to need in implementation of a haptic seat and it also confirms their possibility meaningfully. We expect the interaction between a driver and a vehicle and safety improvement potentially through applied haptic seat on actual vehicles.

Development of the Optimization Analysis Technology for the Combustion System of a HSDI Diesel Engine (HSDI 디젤엔진의 연소계 최적화 해석기술 개발)

  • Lee Je-Hyung;Lee Joon-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.153-158
    • /
    • 2006
  • To optimize the combustion system in a HSDI diesel engine, a new analysis technology was developed. The in-cylinder 3-D combustion analysis was carried out by the modified KIVA-3V, and the spray characteristics for the high pressure injection system were analyzed by HYDSIM. The combustion design parameters were optimized by coupling the KIVA-3V and the iSIGHT. The optimization procedure consists of 3 steps. The $1^{st}$ step is the sampling method by the Design of Experiment(DOE), the $2^{nd}$ step is the approximation using the Neural Network method, and the $3^{rd}$ step is the optimization using the Genetic Algorithm. The developed procedures have been approved as very effective and reliable, and the computational results agree well with the experimental data. The analysis results show that the optimized combustion system in a HSDI diesel engine is capable of reducing NOx and Soot emissions simultaneously keeping a same level of the fuel consumption(BSFC).

Development of Antimicrobial Polyurethane Foam for Automotive Seat Modified by Urushiol (우르시올을 첨가한 자동차 시트용 항균 폴리우레탄 발포체 개발)

  • Hong Chae-Hwan;Kim Hyun-Sung;Park Heon-Hee;Kim Youn-Hee;Kim Sang-Bum;Hwang Tae-Won
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.402-406
    • /
    • 2006
  • New antibacterial Polyurethane foams for car seat with Urushiol extracted from a natural lacquer were prepared. Influences of antibacterial agent's concentration on the reactivity with isocyanate and the mechanical properties of foams were investigated. It was observed that the urethane formation reaction was delayed a little when the amount of Urushiol was increased. However, the foams made using Urushiol showed similar property to the neat polyurethane foam. In terms of antibacterial property, the foams prepared with Urushiol showed better performance than the neat polyurethane foam.

Nano-Kenaf Cellulose Effects on Improved Mechanical Properties of Polypropylene Composite (나노 케냐프 셀룰로오스가 폴리프로필렌 복합소재의 물성 증가에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Bumm, Sughun;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.613-617
    • /
    • 2013
  • The effects of nano size kenaf cellulose fiber on mechanical property of polypropylene (PP) composite were investigated. The addition of nano-kenaf in place of natural kenaf showed higher tensile strength, flexural strength, impact strength, and heat deflection temperature compared to the natural kenaf filled PP composite, while it shows lower melt flow index, elongation%, and flexural modulus. These seemed to be due to the increased surface area of nano-kenaf fiber contacting PP matrix and reduced impurities such as volatile extractives on the fiber surface.