• Title/Summary/Keyword: KHNES

Search Result 1,031, Processing Time 0.017 seconds

Characteristics of Flow Induced Noise from a Ball Valve Used for a Gas Pipeline Using an Acoustic Camera (음향 카메라를 이용한 가스 파이프라인 볼밸브 유동소음 특성)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.106-112
    • /
    • 2017
  • The present study describes flow induced noise generated from a ball valve used for a gas pipeline. Noise generation from a ball valve mainly induces by interference between unstable(or fluctuating) leakage flow and pipe wall when the ball valve is working closed or opened. To measure the positions of the noise source and the amplitude of noise with respect to measuring frequencies, a commercial acoustic camera is introduced. Noise characteristics generated by the ball valve have been performed by four valve opening rates: 30, 50, 70 and 100 percents. It is noted that 100 percent opening rate means that the valve is fully opened. Throughout the experimental measurements using the acoustic camera, the location of the noise source and the noise amplitude with respect to the frequencies for the test ball valve are clearly evaluated. It is found that the dominant frequencies come from the fluctuating flow at the downstream of the ball valve for four opening rates are observed between 3,000Hz and 3,200Hz. Maximum noise amplitude comes from the ball valve reaches 75dB at the valve opening rate of 50 percent.

Effects of Deposition Method of Thermally Decomposed Platinum Counter Electrodes on the Performance of Dye-Sensitized Solar Cells (염료 감응형 태양전지 효율에 미치는 백금 상대 전극 제조공정의 영향)

  • SEO, HYUN WOO;BAEK, HYUN DUK;KIM, DONG MIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this work, two different platinum (Pt) counter electrodes have been prepared by spin coating a Pt solution and screen printing a Pt paste on fluorine doped tin oxide (FTO) glass substrate followed by sintering at $380^{\circ}C$ for 30 min. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) analyses of the Pt electrodes showed that the spin coated electrode was catalytically more active than the screen printed electrode. The above result agrees well with the surface morphology of the electrodes studied by atomic force microscopy (AFM) and the photovoltaic performance of the dye-sensitized solar cells (DSSCs) fabricated with the Pt electrodes. Moreover, calculation of current density-voltage (j-V) curves according to diode model with the parameters obtained from the experimental j-V curves and the EIS data of the DSSCs provided a quantitative insight about how the catalytic activity of the counter electrodes affected the photovoltaic performance of the cells. Even though the experimental situations involved in this work are trivial, the method of analyses outlined here gives a strong insight about how the catalytic activity of a counter electrode affects the photovoltaic performance of a DSSC. This work, also, demonstrates how the photovoltaic performance of DSSCs can be improved by tuning the performance of counter electrode materials.

Characteristics of SOFC Anode of Ni/YSZ Core-shell Manufactured Using sSpherical Ni and Nano YSZ Powders (구형 Ni과 나노 YSZ Powder를 이용하여 제조한 Ni/YSZ Core-shell의 SOFC 연료극 특성)

  • Choi, Byung-Hyun;Koo, Ja-Bin;Seol, Kwang-Hee;Ji, Mi-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.40-46
    • /
    • 2017
  • We reviewed the electrical properties of SOFC anode manufactured using spherical Ni and nano YSZ powder. When core-shell is fabricated by using submicron Ni as core and nano-sized YSZ as shell for SOFC anode, the electrical conductivity of the $0.2{\mu}m$ Ni-YSZ core-shell was 3 times higher than that of $1.0{\mu}m$ NiO or $1.0{\mu}m$ Ni-YSZ. Hydrogen selectivity was similar at $800^{\circ}C$, but hydrogen selectivity and methane conversion rate under $750^{\circ}C$ was 10~25% higher, Power density was more than 2 times, ASR was about 1/3, when exposed to $H_2$ atmosphere at $750^{\circ}C$ for a long time, Ni particles did not have any growth or cut off conduction path.

A Study on Effect of the Shape of Electrodes in Alkaline Water Electrolysis (알카리 수전해에서 전극 형상의 영향에 관한 연구)

  • CHOI, SOOKWANG;KIM, JONGSOO;HAN, JIN MOOK;YUN, SEONG-HO;KIM, SEWOONG;JUNG, YOUNGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.121-128
    • /
    • 2017
  • For an investigation on the effect of the shape of electrodes in alkaline water electrolysis, two kinds of stack with circular and square electrode array are used to visualize both for behaviors of hydrogen bubble around the electrodes and for measurements of hydrogen production from these two stacks. The electrolytes for the hydrogen production experiment were applied for 20 wt%, 25 wt%, 30 wt% and 35 wt% of KOH alkaline aqueous solutions. As a result, the adhesion length of bubbles attached around the square electrode in the visualization experiment was found to be 1.7 times longer compared with the attached around the circular electrode. In the hydrogen production experiments, the volume of hydrogen production of the stack by using circular electrode array was approximately 3% more than that of the stack with square electrode array. These observations may be caused by the effect of the bubbles attached to the around the electrodes obstructing mass transfer such as hydrogen exhaust and electrolyte supply.

Investigation of Motion of Single Point Moored Duct-type TCP System by Both Numerical and Experimental Method (수치 해석 및 모형실험을 이용한 수중 일점 계류식 조류발전 장치의 운동 성능 고찰)

  • JO, CHUL HEE;PARK, HONG JAE;CHO, BONG KUN;KIM, MYEONG JOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.212-219
    • /
    • 2017
  • As an environmental pollution and global warming due to an excessive carbon emission are intensified, the importance of renewable energy is in rise today. TCP (Tidal Current Power), one of the renewable energy sources, generates electricity by converting kinetic energy of current into rotational energy of turbine. Also the TCP has a great advantages of predictability and reliability. Because the generating power is proportional to cubic of stream velocity, amplifying current speed by applying duct is highly effective to increase the generating power. SPM (Single Point Mooring) can be applied for the weather vane with various current direction and also augments generating power of the system. In addition, simple installation and retrieval could be a merit of SPM system. By combining duct and SPM, TCP system for relatively low-speed-current and shallow water region can be feasible and economical. In this study, single point moored duct-type TCP system was designed and the motion of submerged structure was investigated in both numerical and experimental method. DNV wadam V4.8-1 and OrcaFlex 10.0a were used for the frequency and time domain motion analysis of system respectively. Duct model scaled by 0.05 of Froude conformity ratio and CWC (Circulate Water Channel) are used for experiment.

Reaction Rate with Hydrogen and Hydrogen-storage Capacity of an 80Mg+14Ni+6TaF5 Alloy Prepared by High-energy Ball Milling in Hydrogen (수소 분위기에서 고 에너지 볼 밀링으로 제조한 80Mg+14Ni+6TaF5합금의 수소와의 반응 속도와 수소 저장 용량)

  • PARK, HYE RYOUNG;SONG, MYOUNG YOUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • In the present study, Ni and $TaF_5$ were chosen as additives to enhance the hydriding and dehydriding rates of Mg. A sample with a composition of 80 wt% Mg + 14 wt% Ni + 6 wt% $TaF_5$ (named $80Mg+14Ni+6TaF_5$) was prepared by high-energy ball milling in hydrogen. Its hydriding and dehydriding properties were then examined. At the fourth cycle, the activated sample absorbed 3.88 wt% H for 2.5 min, 4.74 wt% H for 5 min, and 5.75 wt% H for 60 min at 593 K under 12 bar $H_2$. $80Mg+14Ni+6TaF_5$ had an effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of about 5.8 wt%. The sample desorbed 1.42 wt% H for 5 min, 3.42 wt% H for 15 min, and 5.09 wt% H for 60 min at 593 K under 1.0 bar $H_2$. Line scanning results by EDS for $80Mg+14Ni+6TaF_5$ before and after cycling showed that the peaks of Ta and F appeared at different positions, indicating that the $TaF_5$ in $80Mg+14Ni+6TaF_5$ was decomposed.

Experimental Study on the NO2/NOX Ratio from Exhaust of Diesel Vehicles by Chassis Dynamometer (경유자동차에서 배출되는 NO2/NOX 비율 특성)

  • KIM, SUNMOON;KIM, JOUNGHWA;JUNG, SUNGWOON;SUNG, KIJAE;KIM, JEONGSOO;KIM, INGU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.220-224
    • /
    • 2017
  • Nitrogen dioxide ($NO_2$) is an important urban pollutant in Korea. Expecially, diesel vehicles are responsible for the most traffic rated nitrogen oxide ($NO_X$) emission, including nitric oxide (NO) and nitrogen dioxide ($NO_2$). Though nitrogen oxide ($NO_X$) emission from vehicle was applied a strict enforcement of emission standard, the specific $NO_2$ fraction in $NO_X$ ($NO_2/NO_X$) from various types of diesel vehicles was not understood. In order to investigate the fraction of $NO_2/NO_X$, the vehicle emission study was carried out at the facility of Transport Pollution Research Center (TPRC), National Institute of Environmental Research (NIER), Korea. Three different types of diesel vehicles(VAN, SUV, passenger) were tested on the NIER driving mode. The result of $NO_2/NO_X$ ratio was over 0.1 for all test vehicles and the highest $NO_2$ emission was observed at the van vehicle. The observation was showed that the emission trend of $NO_2/NO_X$ for passenger and SUV vehicles were inversely proportional. Also, as the emission standard has been strengthen, the emission rate of $NO_2$ has been decrease.

Life Cycle Assessment (LCA) and Energy Efficiency Analysis of Fuel Cell Based Energy Storage System (ESS) (연료전지 기반 에너지저장 시스템의 환경 전과정평가 및 에너지 효율성 분석)

  • KIM, HYOUNGSEOK;HONG, SEOKJIN;HUR, TAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.156-165
    • /
    • 2017
  • This study quantitatively assessed the environmental impacts of fuel cell (FC) systems by performing life cycle assessment (LCA) and analyzed their energy efficiencies based on energy return on investment (EROI) and electrical energy stored on investment (ESOI). Molten carbonate fuel cell (MCFC) system and polymer electrolyte membrane fuel cell (PEMFC) system were selected as the fuel cell systems. Five different paths to produce hydrogen ($H_2$) as fuel such as natural gas steam reforming (NGSR), centralized naptha SR (NSR(C)), NSR station (NSR(S)), liquified petroleum gas SR (LPGSR), water electrolysis (WE) were each applied to the FCs. The environmental impacts and the energy efficiencies of the FCs were compared with rechargeable batteries such as $LiFePO_4$ (LFP) and Nickel-metal hydride (Ni-MH). The LCA results show that MCFC_NSR(C) and PEMFC_NSR(C) have the lowest global warming potential (GWP) with 6.23E-02 kg $CO_2$ eq./MJ electricity and 6.84E-02 kg $CO_2$ eq./MJ electricity, respectively. For the impact category of abiotic resource depletion potential (ADP), MCFC_NGSR(S) and PEMFC_NGSR(S) show the lowest impacts of 7.42E-01 g Sb eq./MJ electricity and 7.19E-01 g Sb eq./MJ electricity, respectively. And, the energy efficiencies of the FCs are higher than those of the rechargeable batteries except for the case of hydrogen produced by WE.

An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine (수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, JEONGSOO;Lee, Seong-Uk;KIM, SUNMOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

Effect of Coal Ash as A Catalyst in Biomass Tar Steam Reforming (바이오매스 타르 수증기 개질에서의 석탄회재 촉매 효과)

  • JANG, JINYOUNG;OH, GUNUNG;RA, HOWON;SEO, MYUNGWON;MUN, TAEYOUNG;MOON, JIHONG;LEE, JAEGOO;YOON, SANGJUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2017
  • Ash remaining after coal combustion was used as a catalyst support for tar steam reforming with various proportions of $Al_2O_3$ added for higher reforming efficiency. At a constant Ni content of 12 wt%, a coal ash and $Al_2O_3$ were mixed at a ratio of 5:5, 7:3, 9:1. As a result, the catalytic activity for toluene steam reforming was improved by adding $Al_2O_3$ at $500-600^{\circ}C$. The catalysts with ratio 7:3 and 5:5 reached toluene conversion of 100% above $700^{\circ}C$. When comparing the catalysts in which the coal ash and $Al_2O_3$ mixed at a ratio of 5:5 and 7:3 with the Ni/Al catalyst, it was concluded that this coal ash catalyst has efficient catalytic performance.