• Title/Summary/Keyword: KHNES

Search Result 1,031, Processing Time 0.022 seconds

Simulation Study on the Application of LNG Cold Energy for Hydrogen Liquefaction Process (수소액화공정에서 LNG 냉열 적용에 관한 시뮬레이션 연구)

  • HAN, DANBEE;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • As hydrogen utilization becomes more active recently, a large amount of hydrogen should be supplied safely. Among the three supply methods, liquefied hydrogen, which is an optimal method of storage and transportation convenience and high safety, has a low temperature of -253℃, which is complicated by the liquefaction process and consumes a lot of electricity, resulting in high operating costs. In order to reduce the electrical energy required for liquefaction and to raise the efficiency, hydrogen is cooled by using a mixed refrigerant in a precooling step. The electricity required for the precooling process of the mixed refrigerant can be reduced by using the cold energy of LNG. Actually, LNG cold energy is used in refrigeration warehouse and air liquefaction separation process, and a lot of power reduction is achieved. The purpose of this study is to replace the electric power by using LNG cold energy instead of the electric air-cooler to lower the temperature of the hydrogen and refrigerant that are increased due to the compression in the hydrogen liquefaction process. The required energy was obtained by simulating mixed refrigerant (MR) hydrogen liquefaction system with LNG cold heat and electric system. In addition, the power replacement rate of the electric process were obtained with the pressure, the temperature of LNG, the rate of latent heat utilization, and the hydrogen liquefaction capacity, Therefore, optimization of the hydrogen liquefaction system using LNG cold energy was carried out.

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode (Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향)

  • CHAE, JAEBYEONG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KIM, YOUNGHO;KANG, KYOUNGSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

Intermittent Operation Induced Deactivation Mechanism for HER of Ni-Zn-Fe Electrode for Alkaline Electrolysis (수소발생용 Ni-Zn-Fe 합금 전극의 간헐적 작동에 따른 비활성화 특성)

  • HAN, JIMIN;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KANG, KYOUNGSOO;KIM, YOUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.8-22
    • /
    • 2020
  • In this study, we investigated the deactivation characteristics of Ni-Zn-Fe electrodes due to intermittent operation in alkaline water electrolysis. To find suitable method to accelerate deactivation of electrode, the accelerated stress-test (AST) which repeated on/off step was performed with constant current/voltage control. The AST under constant voltage control is suitable to deactivate electrode so it were selected to investigate deactivation of electrode. The AST which repeated on/off step in range of -1.3 V and 0 V was performed and the relationship between oxidation current and electrode deactivation in the off step was investigate. As results, it was confirmed that the nickel and zinc on electrode surface were oxidized due to anodic current which occurred at off step.

Synthesis and Characterization of Covalently Cross-Linked SPEEK/Cs-substituted MoSiA/Ceria Composite Membranes with MoSiA for Water Electrolysis (MoSiA를 이용한 수전해용 공유가교 SPEEK/Cs-MoSiA/Ceria복합막의 제조 및 성능 연구)

  • SEO, HYUN;SONG, YU-RI;OH, YUN-SUN;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.524-531
    • /
    • 2015
  • To improve the electrochemical and mechanical characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The SPEEK organic-inorganic blended composite membranes were prepared by sol-gel casting method. It was loaded with the highly dispersed ceria and cesium-substituted molybdosilicic acid (Cs-MoSiA) and 1,4-diiodobutane which was cross-linking agent contents of $10{\mu}L$. Cs-MoSiA was added to increase proton conductivity. Ceria ($CeO_2$) was used as a free radical scavenger which degrade the membrane in polymer electrolyte membrane water elctrolysis (PEMWE). In conclusion, CL-SPEEK/Cs-MoSiA/Ceria 1% composite membrane showed high proton conductivity 0.2104 S/cm at $25^{\circ}C$ which was better than Nafion 117 membrane.

Characteristics of a Hydrogen Isotope Storage and Accountancy System (수소동위원소 저장 계량 장치 특성 연구)

  • KIM, YEANJIN;JUNG, KWANGJIN;GOO, DAESEO;PARK, JONGCHUL;JEON, MIN-GU;YUN, SEI-HUN;CHUNG, HONGSUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.541-546
    • /
    • 2015
  • Global energy shortage problem is expected to increase driven by strong energy demand growth from developing countries. Nuclear fusion power offers the prospect of an almost infinite source of energy for future generations. Hydrogen isotope storage and delivery system is a important subsystem of a nuclear fusion fuel cycle. Metal hydride is a method of the high-density storage of hydrogen isotope. For the safety storage of hydrogen isotope, depleted uranium (DU) has been widely proposed. But DU needs a safe test because It is a radioactive substance. The authors studied a small-scale DU bed and a medium-scale DU bed for the safety test. And then we made a large-scale DU bed and stored hydrogen isotopes in the bed. Before the hydriding/dehydriding, we tested it's heating and cooling properties and carried out an activation procedure. As a result, Reaction rate of DU-$H_2$ is more rapid than the other metal hydride ZrCo. Through the successful storage result of our large bed, the development possibility of the hydrogen isotope storage technology seems promising.

Reduction and Decomposition Characteristics of CaSO4 Based Oxygen Carrier Particles (CaSO4 기반 산소전달입자의 환원과 분해특성)

  • RYU, HOJUNG;KIM, HANA;LEE, DONGHO;JIN, GYOUNGTAE;BAEK, JEOMIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.600-608
    • /
    • 2015
  • As a candidate for cheap oxygen carrier, $CaSO_4$ based oxygen carriers have been developing. However, research on reaction characteristics and side reaction of $CaSO_4$ based oxygen carrier is very limited. There are many possible reactions for main components of syngas from coal. In this study, we prepared three $CaSO_4$ based oxygen carriers ($CaSO_4$-$Fe_2O_3$/bentonite, $CaSO_4$-$K_2CO_3$/bentonite, $CaSO_4$-CaO/bentonite) and performed reduction tests by hydrogen. Cyclic reduction-oxidation tests up to $5^{th}$ cycle are also conducted using hydrogen as fuel. Reduction reactivity of those $CaSO_4$ based oxygen carriers were compared with that of NiO based oxygen carrier (OCN703-1100). Real weight change fractions of $CaSO_4$ based oxygen carriers were higher than theoretical oxyen transfer capacity and reactivity of these particles decreased with the number of cycle increased. To check possible side reaction of $CaSO_4$ based oxygen carriers, $CaSO_4$ decomposition tests were carried out and $SO_2$ was detected even at $700^{\circ}C$. Consequently, we could conclude that $CaSO_4$ based oxygen carriers decompose and release $SO_2$ and this reaction lead reactivity decay of $CaSO_4$ based oxygen carries.

Bio-Jet Fuel Production Technologies for GHG Reduction in Aviation Sector (항공분야 온실가스 감축을 위한 바이오항공유 제조기술)

  • KIM, JAE-KON;PARK, JO YONG;YIM, EUI SOON;MIN, KONG-IL;PARK, CHEON-KYU;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.609-628
    • /
    • 2015
  • Thie study presents the biomass-derived jet (bio-jet) fuel production technologies for greenhouse gas (GHG) reduction in aviation sector. The aviation sector is responsible for the 2% of the world anthropogenic $CO_2$ emissions and the 10% of the fuel consumption: airlines' costs for fuel reach 30% of operating costs. In addition, the aviation traffic is expected to double within 15 years from 2012, while fuel consumption and $CO_2$ emissions should double in 25 years. Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This jet fuel, additionally, must meet ASTM International specifications and potentially be a100% drop-in replacement for current petroleum jet fuel. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways are reviewed for process, economic analysis and life cycle assessment (LCA) on conversion pathways to bio-jet fuel.

The Study on Effect of Emissions and Performance of a Conventional Vehicle using the High Concentration Alcohol Blended Petroleum Product (고농도 알코올 혼합 석유제품이 자동차 성능 및 배출가스에 미치는 영향 연구)

  • KIM, SUNG-WOO;DOE, JIN-WOO;KIM, KI-HO;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • As concern about energy security and global warming many countries have been making effort to reduce fossil fuel. In the case of US, as one of the efforts, the standards of the alcohol vehicle fuels(including blended with gasoline) have been established. Alcohol is known that make some trouble concerning startability, durability and corrosion when using as fuel of a conventional vehicle. For these reason, alcohol usage needs not only the fuel standard, but also a modified car. In the case of Korea, although there are no the standard and the modified vehicle yet, high concentration alcohol blended fuel has being sold at illegal market. In this study, exhaust gas and performance of the conventional vehicle that alcohol(methanol and isopropyl alcohol) blends were fueled were measured to notify danger of using them without preparation of institutional arrangements. Also, to analyze correlation characteristics of the fuels and them, property test of the fuels was conducted. The test result show that bad-startability caused by low RVP and high T10 affected increase in NMOG and CO. NOx was increased under the highest short term fuel trim caused by high Oxygen content and low NHV of alcohol. According to increasing as alcohol content, fuel economy and acceleration ability were decreased but $CO_2$ was not significantly decreased.

A Study on Design of the Linear Generator in the Double Acting Stirling Engine (양방향 스털링엔진의 선형발전기 설계에 관한 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.638-644
    • /
    • 2015
  • This paper describes the continuing effort to analysis and design on dynamic and electrical behavior of gamma-type free piston Stirling engine/generator with dual-opposed linear generator for domestic micro-CHP (Combined Heat and Power) system. The double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric sinusoidal displacement and are connected with moving magnet type linear generators for power generation. To operate Stirling engine/generator, combustion heat of natural gas is supplied to hot-end and heat is rejected from cold-end by cooling water. The temperature difference across the displacer induces the oscillating motion, and it can be explained with mass-spring vibration system. The purpose of this paper is to describe the design process of linear generator for the double acting free-piston Stirling engine.

Experimentally Evaluation of a Liquid Pool Spreading Model with Continuous Release (연속누출을 가지는 액체 풀 확산 모델의 실험적 평가)

  • KIM, TAEHOON;DO, KYU HYUNG;KIM, MYUNGBAE;HAN, YONG-SHIK;CHOI, BYUNG-IL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.659-665
    • /
    • 2015
  • In this study, an experimental investigation is performed for evaluation of a liquid pool spreading model with continuous release. The model considered in this study was developed based on a concept which means that the liquid pool spreading is governed by a balance between an inertia force from gravity and a frictional force from friction with the ground under the whole base of the liquid pool. For evaluation of the model, experimental study is performed. Experimental apparatus is setup for measuring release rate, spreading velocity, and evaporation rate from a liquid pool. The experimental results are compared with results from the model. By applying release and evaporation rates obtained from experiments to solving the model, liquid pool radius variation according to time can be obtained. For evaluation of an effect of friction force in the spreading model, results obtained from the models with and without the friction force are compared with those obtained from the experiments. As a result, it is shown that there exists a large deviation between the results obtained from the model without the friction force and the experimental results. On the other hand, the tendency of liquid pool radius variation according to time is similar between the results obtained from the model without the friction force and the experimental results.