• Title/Summary/Keyword: KHNES

Search Result 1,031, Processing Time 0.017 seconds

Development of Activated Graphite Felt Electrode Using Ozone and Ammonia Consecutive Post Treatments for Vanadium Redox Flow Batteries (오존, 암모니아 순차적 처리를 통한 바나듐 레독스 흐름 전지용 활성화 카본 펠트 전극 개발)

  • CHOI, HANSOL;KIM, HANSUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.256-262
    • /
    • 2021
  • A carbon felt electrode was prepared using ozone and ammonia sequential treatment and applied as an electrode for a vanadium redox flow battery (VRFB). The physical and electrochemical analyses demonstrate that the oxygen groups facilitate nitrogen doping in the carbon felt. Carbon felt (J5O3+NH3), which was subjected to ammonia heat treatment after ozone treatment, showed higher oxygen and nitrogen contents than carbon felt (J5NH3+O3), which was subjected to ammonia heat treatment first and then ozone treatment. From the charging/discharging of VRFB, the J5O3+NH3 carbon felt electrode showed 14.4 Ah/L discharge capacity at a current density of 150 mA /cm2, which was 15% and 33% higher than that of J5NH3+O3 and non-activated carbon felt (J5), respectively. These results show that ozone and ammonia sequential treatment is an effective carbon felt activation method to increase the performance of the vanadium redox flow battery.

Hydrogen Isotopes Recovery Using Pd Membrane and Process Simulation (Pd 분리막을 이용한 수소동위원소 회수 실험과 공정 시뮬레이션)

  • JUNG, WOO-CHAN;PARK, JONG-HWAN;HAN, SANG-WOO;JANG, MIN-HO;LEE, HYEON-GON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.219-227
    • /
    • 2021
  • Hydrogen isotopes, which are used as raw materials in fusion reaction, participate in the reaction only in small amount, and most of them are released together with impurities. In order to recover and reuse only hydrogen isotopes from this exhaust gas, a recovery process is required, and most of the hydrogen isotopes can be recovered using a Pd Membrane. In this study, the recovery rate of hydrogen isotopes was measured through the first and second stage Pd membrane experiments. In the case of the experiment using a single stage Pd membrane, about 99.2%, and in the case of the first stage and second stage Pd membrane connection experiments, a recovery rate of 99.9% or more was obtained. Therefore, the recovery rate of Pd membrane process applied to hydrogen can be applied to hydrogen isotopes. In addition, the simulation model was established using aspen custom modeler, a commercial software, and the validity of the simulation was checked by applying the references and experimental data. The simulation results based on the experimental data showed a difference of 2% or less.

Numerical Model Development of a Microchannel Condenser for Mobile Air-Conditioning Systems (자동차용 에어컨의 마이크로채널 응축기의 수치적 모델 개발)

  • ISHAQUE, SHEHRYAR;ULLAH, NAVEED;CHOI, JUN-HO;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.430-436
    • /
    • 2022
  • This paper presents the numerical model development of a microchannel heat exchanger in mobile air-conditioning and heat pump applications. The model has been developed based on the effectiveness-NTU method using a segment-by-segment modeling approach. State-of-art correlations are used for refrigerant- and air-side heat transfer coefficients and pressure drops. The calculated heat condenser capacities are in good agreement with experimental data, with an average difference of 1.86%. The current model can be used for microchannel condenser simulations under various operating conditions. It is anticipated to improve productivity in designing and optimizing microchannel heat exchangers with folded louver fin geometry.

A Study on the Effect of Non-Clean Water Treatment Chemicals for R-134a Turbo-Chiller Condensers (R-134a 터보냉동기 응축기의 무세정 수처리 약품 효과 연구)

  • JUNG, DA-WOON;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.437-445
    • /
    • 2022
  • This paper presents an experimental study on the main management factors of the condenser contamination such as fouling and corrosion for the R-134a turbo-chiller to save energy, reduce corrosion rates, and reduce maintenance costs through the application of condenser non-cleaning water treatment chemical. The series of experiment is conducted using combining oxidative microbial sterilizers, non-oxidizing microbial sterilizers, and anti-corrosion agents. The leaving temperature difference and corrosion rates for three different combination of chemicals are collected and analyzed. The experimental results show that the cost reduction (4,066,000 Won/year) of the disinfectant (FT-830) can be achieved by adding the oxidative disinfectant (NaOCl) and the non-oxidizing disinfectant (NX-1116). The LTD value is maintained at 1.9℃, and the corrosion rates of copper and carbon steel specimens are 0.07 mpy and 1.61 mpy, respectively.

Characterization of Electrochemical Ammonia Electrolysis Using a Platinum Electrode for Anodic Reaction (Pt포일 양극을 이용한 전기화학적 암모니아 수전해 특성 연구)

  • CHOI, JEONGMIN;KIM, HAKDEOK;SONG, JUHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.337-342
    • /
    • 2022
  • In this study, a water electrolysis was studied to investigate the effect of ammonia on current density and H2 gas production. A H type cell with three electrodes was used and KOH solution was used as electrolyte. The conventional platinum foil was used for working electrode, whereas nickel foam was used for counter electrode. CV experiment was performed to see the activity of ammonia oxidation reaction. In addition, CP experiment was done to examine the dependence of Faraday efficiency of hydrogen on current density and NH3 concentration. The CV result shows the 0.5M NH3 concentration required for highest current density and reliable operation. The CP result shows the increased current density leads to higher H2 generation. The higher H2 production and subsequent energy efficiency was observed for 0.5M NH3 using a Pt/13%Rh coil for a cathode as compared to those in water electrolysis.

Simulation Analysis of MILD Combustion and NOx Formation for Methane-Hydrogen Mixture Using 0D Model (0D 모델을 활용한 메탄-수소 혼소에 따른 MILD 연소 및 NOx 배출 특성 해석 연구)

  • AN, SOJEONG;PARK, JINJE;BAE, YOUN-SANG;LEE, YOUNGJAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.400-412
    • /
    • 2022
  • Hydrogen with high chemical reactivity and combustion efficiency, is expected to reduce greenhouse gas and CO emission. However, there is a problem of increase in NOx emission due to hydrogen combustion. MILD combustion technology has been proposed to resolve NOx emission. In this study, the characteristics of MILD combustion and NOx formation by flue gas recirculation (KV) in CH4-H2 mixture were analyzed and predicted using 0D premixed combustion model. The ignition delay time became shorter as the hydrogen co-firing rate increased, and longer as the recirculation rate increased. For NOx emission, EINO decreased as the KV increased, but EINO increased as the hydrogen co- firing rate increased. In particular, EINO was predicted to increase significiently above 80% hydrogen. Through the pathway analysis of NO formation, it was found that the influence of N2O intermediate route and NNH route was enhanced for hydrogen co-firing.

A Study on the Method to Avoid the Gas Group IIC Equipment of Explosion Proof Electrical Equipment Adjacent to the Source of Release of Hydrogen Handling Facility (수소 취급설비의 누출원에 인접한 방폭전기기기의 가스그룹 IIC 기기 회피 방안에 관한 연구)

  • BYUN, YOON SUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.383-390
    • /
    • 2022
  • Appropriate explosion proof electrical equipment should be installed in hazardous areas. In areas where hydrogen is handled, explosion proof electrical equipment adjacent to the hydrogen handing facility must be reviewed for selection of gas group IIC (or IIB+H2) equipment. When selecting explosion proof electrical equipment for the flammable substance handling facility in areas where hydrogen and flammable substance are handled, the method to avoid gas group IIC (or IIB+H2) equipment has been suggested by using the operating pressure of the hydrogen handling facility. When the operating pressure of the outdoor hydrogen handling facility is 1.065 MPa or less, it has been confirmed that there is no need to install gas group IIC (or IIB+H2) equipment for the flammable substance handling facility adjacent to the hydrogen handling facility. And the method of selecting explosion proof electrical equipment for the flammable substance handling facility has been suggested as a flowchart, so it will be able to be utilized when selecting appropriate explosion proof electrical equipment.

Financial Analysis and Validity Study for the Introduction of Liquid Hydrogen in Changwon City (창원시 액화수소 도입에 따른 재무성 분석 및 타당성 검토)

  • KANG, BOO MIN;JEONG, CHANG-HOON;HA, SEUNG WOO;JIN, HONG-DEOK;KIM, HAK-MIN;JEONG, DAE-WOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.293-300
    • /
    • 2022
  • The Changwon city which announced 2040 hydrogen policy vision is planning to establish the new hydrogen-centered city. The building of plant which is available to produce the 5 ton/day of liquid hydrogen is promoted as one of the projects in order to achieve the vision. However, the analysis in terms of local economic and environmental aspects is insufficient because this liquid hydrogen plant is the first in Korea. Therefore, in this study, the financial feasibility of the liquid hydrogen plant project was analyzed by reviewing the benefits of liquid hydrogen supply and environmental improvement, and the feasibility of this project has been investigated which is being built based on the hydrogen industrial plan of Changwon city.

Plan to Promote the Supply of Hydrogen City Buses in Busan (부산시 수소시내버스 보급 활성화 방안 연구)

  • LEE, WONGYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.309-317
    • /
    • 2022
  • There are 2,517 buses on 143 routes in Busan. One company is operating 36 hydrogen city buses (1.4%) and two hydrogen charging stations. By 2030, the number of hydrogen city buses will be increased to 500 and 40 hydrogen charging stations. In the survey of city bus companies, 61.5% of respondents answered 'not reviewing (at all)' and 23.0% of respondents '(actively) reviewing hydrogen buses'. And as for the level of help that hydrogen city buses give to bus companies, 23.5% answered 'helpful'. In order to promote the introduction of hydrogen city buses, first, it is necessary to stipulate support for hydrogen bus purchase cost and hydrogen charging station construction cost in related ordinances so that bus companies do not increase their burden of purchasing hydrogen buses in the future. Second, identify the number of new city buses introduced, convert about 50% to hydrogen city buses by the mid-term, and build 50% of the chargers in public garages with hydrogen chargers. Third, expand hydrogen refueling stations in city bus garages.

High Temperature Characteristics of Commercially Available Anion Exchange Membrane for Alkaline Water Electrolysis (알칼리 수전해를 위한 상용 음이온교환막의 고온 특성)

  • JANG, SU-YOEN;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.330-336
    • /
    • 2022
  • In order to evaluate the possibility as a separator in alkaline water electrolysis, the high temperature characteristics were evaluated by measuring the membrane resistance and durability of 5 types of commercial anion exchange membranes in 7 M KOH solution and at 80℃. The membrane resistance of AEM membrane measured in 7 M KOH solution and at 80℃ had a lower value of about 8-24 times compared to the other membranes. The durability of AEM membrane tested with the soaking time in 7 M KOH solution and at 80℃ showed a very good stability and that of FAAM40 and FAAM75-PK showed secondly a good stability. The thermal stability with the soaking time in 7 M KOH solution and at 80℃ of FAAM40 and FAAM75-PK membrane analyzed by thermo-gravimetric analysis showed a good stability compared to the other membranes.