• 제목/요약/키워드: KHNES

검색결과 1,031건 처리시간 0.017초

유기 랭킨 사이클로 구동되는 증기압축 냉동사이클의 성능 해석 (Performance Analysis of a Vapor Compression Cycle Driven by Organic Rankine Cycle)

  • 김경훈;진재영;고형종
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.521-529
    • /
    • 2012
  • Since the energy demand for refrigeration and air-conditioning has greatly increased all over the world, thermally activated refrigeration cycle has attracted much attention. This study carries out a performance analysis of a vapor compression cycle (VCC) driven by organic Rankine cycle (ORC) utilizing low-temperature heat source in the form of sensible heat. The ORC is assumed to produce minimum net work which is required to drive the VCC without generating an excess electricity. Effects of important system parameters such as turbine inlet pressure, condensing temperature, and evaporating temperature on the system variables such as mass flow ratio, net work production, and coefficient of performance (COP) are thoroughly investigated. The effect of choice of working fluid on COP is also considered. Results show that net work production and COP increase with increasing turbine inlet pressure or decreasing condensing temperature. Out of the five kinds of organic fluids considered $C_4H_{10}$ gives a relatively high COP in the range of low turbine inlet pressure.

수소 가압형 기계적 합금화법으로 제조한 MgHx-Nb2O5 산화물 복합 재료의 수소화 특성 평가 (Evaluations of Hydrogen Properties of MgHx-Nb2O5 Oxide Composite by Hydrogen Induced Mechanical Alloying)

  • 이나리;이수선;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.429-436
    • /
    • 2012
  • Mg and Mg-based alloys are regarded as strong candidate hydrogen storage materials since their hydrogen capacity exceeds that of known metal hydrides. One of the approaches to improve kinetic is addition of metal oxide. In this paper, we tried to improve the hydrogenation properties of Mg-based hydrogen storage composites. The effect of transition metal oxides, such as $Nb_2O_5$ on the kinetics of the Magnesium hydrogen absorption kinetics was investigated. $MgH_x$-5wt.% $Nb_2O_5$ composites have been synthesized by hydrogen induced mechanical alloying. The powder fabricated was characterized by X-ray diffraction (XRD), Field Emission-Scanning Electron Microscopy (Fe-SEM), Energy Dispersive X-ray (EDX), BET and simultaneous Thermo Gravimetric Analysis / Differential Scanning Calorimetry (TG/DSC) analysis. The Absorption / desorption kinetics of $MgH_x$-5wt.% $Nb_2O_5$ (type I and II) are determined at 423, 473, 523, 573 and 623 K.

삼중수소 저장을 위한 ZrCo 저장재에서의 수소 흡장에 대한 수치해석적 연구 (I) (A Numerical Investigation of Hydrogen Absorption Reaction Based on ZrCo for Tritium Storage (I))

  • 유하늘;윤세훈;장민호;강현구;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.448-454
    • /
    • 2012
  • In this paper, a three-dimensional hydrogen absorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 99% hydrogen charging time. The equilibrium pressure expression for hydrogen absorption on ZrCo is derived as a function of temperature and the H/M atomic ratio based on the pressure-composition isotherm data given by Konishi et al. In addition, this present model provides multi-dimensional contours such as temperature and H/M atomic ratio in the thin doublelayered annulus metal hydride region. This numerical study provides fundamental understanding during hydrogen absorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen charging performance. The present three-dimensional hydrogen absorption model is a useful tool for the optimization of bed design and operating conditions.

중력방향과 대향류인 저속 원형노즐제트 충돌에 의한 일정 두께 하향 등온원형평판에서의 열전달 현상 (The Study of Heat Transfer on a Isothermal Circular Surface by an Impinging, Circular Water Jets with the Low Velocity Against the Direction of Gravity)

  • 엄용균
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.449-458
    • /
    • 2014
  • The heat transfer phenomenon was investigated in this study when a single round water jet with the low velocity and against the direction of gravity flows to the downward facing Isothermal of definite thickness circular plate. Experimental investigation is performed for a single round jet diameter 4mm, 6mm, and 8mm with the jet velocity 2.4m/s and jet fluid temperature of $24^{\circ}C$, varied the ratio of nozzle clearance/nozzle diameter (H/D)1, 2, 3, 6, and 8, on circular plate isothermal condition with $85^{\circ}C$. The local convection heat transfer coefficient distributions are analyzed based on the visualization of jet flow field. The effects of the diameter of Nozzle, the ratio of H/D and the ratio of nozzle diameter/circular plate diameter on heat transfer phenomenon are investigated. As a results of experiment is obtained correlation equation, $Nu_r=3.18Re_r^{0.55}Pr_r^{0.4}$.

극한지 온도조건에 파이프라인 내부 열유동 영향변수 평가 (Numerical Study about Influence Variables of Permafrost Pipeline by using Thermal Flow Analysis)

  • 조철희;황수진;장춘만;이준호
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.443-448
    • /
    • 2014
  • This paper describes thermal flow characteristics in various pipelines: straight pipeline and curved pipeline. In the permafrost area, pipelines are exposed to an extremely low temperature ($-40^{\circ}C$). In this situation, three-dimensional flow analysis should be analyzed to investigate thermal effects such as pressure drop, temperature change, velocity deficit and distribution change of liquid droplet of internal fluid. In this paper, multi-phase and multi-species analysis was introduced to analyze the flow characteristics of permafrost pipelines on the vertical support members above ground.

전산 모델링을 통한 모노리스 촉매형 메탄화 반응기의 성능 특성 연구 (Computer Simulation of Methanation Reactor with Monolith Catalyst)

  • 지준화;김성철;홍진표
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.425-435
    • /
    • 2014
  • Simulation studies on catalytic methanation reaction in externally cooled tubular reactor filled with monolithic catalysts were carried out using a general purpose modelling tool $gPROMS^{(R)}$. We investigated the effects of operating parameters such as gas space velocity, temperature and pressure of feeding gas on temperature distribution inside the reactor, overall CO conversion, and chemical composition of product gas. In general, performance of methanation reaction is favored under low temperature and high pressure for a wide range of their values. However, methane production becomes negligible at temperatures below 573K when the reactor temperature is not high enough to ignite methanation reaction. Capacity enhancement of the reactor by increasing gas space velocity and/or gas inlet pressure resulted no significant reduction in reactor performance and heat transfer property of catalyst.

고분자전해질형 연료전지의 단순 채널 리브 형상에서의 물방울 가시화 연구 (Visualization of Water Droplets in the Simple Flow Channel and Rib Geometry for Polymer Electrolyte Membrane Fuel Cells (PEMFCs))

  • 최민욱;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.386-392
    • /
    • 2014
  • The effective water management in a polymer electrolyte membrane fuel cell (PEMFC) is one of the key strategies for improving cell performance and durability. In this work, an ex situ measurement was carried out to understand the water droplet behavior on the surface of gas diffusion layer (GDL) as a fundamental study for establishing novel water management. For that purpose, simplified cell including one rib and two flow channels was designed and fabricated. Using this ex situ device, the water droplet emergence through the GDL of the PEMFC was emulated to understand liquid water transport through the porous diffusion medium. Through the visualization experiment, the emergence and growth of water droplets at the channel/GDL interface are mainly observed with the surface characteristics of GDL (SGL 10BA, 24BA) and rib when the liquid water passes through the GDL and is expelled to the flow channel. It is expected that the results obtained from this study can contribute to the better understanding on the water droplet behavior (emergence and removal) in the flow channels of PEMFC.

SOFC와 MCFC에 적용하기 위한 촉매연소-수증기 개질이 통합된 반응기의 성능에 관한 실험적 연구 (An Experimental Study on the Performances of a Coupled Reactor with Catalytic Combustion and Steam Reforming for SOFC and MCFC)

  • 강태규;김용모;이상민;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.364-377
    • /
    • 2014
  • The performances of a coupled reactor in which a steam reformer and a catalytic combustor were mounted simultaneously had been investigated and compared. The combustible offgas exhausted from the anode of SOFC and MCFC were utilized as heat sources for the endothermic steam methane reforming. The catalytic combustion was used in order to burn the combustible offgas. Thermal energy released by the catalytic combustion is directly transferred to the reformer surrounding the combustor. The various operational conditions such as fuel utilization rate, steam to carbon ratio, amount of catalysts, fuel cell loads were changed. And operating variables were comprehensively identified by sensitivity analysis. The fundamental results from this experimental study show the potential abilities of the coupled reactor. Therefore the results will be of help to design and manufacture the more better coupled reactor in the future.

SEWGS 시스템을 위한 WGS 촉매의 반응성에 미치는 수소 전 처리 방법의 영향 (Effect of Pre-treatment Method on Reactivity of WGS Catalyst for SEWGS System)

  • 류호정;박지혜;이동호;선도원;이영우
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.355-363
    • /
    • 2014
  • Thermal shock or overheating of WGS catalyst for SEWGS system during hydrogen pre-treatment can cause reactivity decay of the catalyst. To select appropriate pre-treatment condition, temperature profiles of catalyst bed (or outside fluidized particle bed of bed insert) during pre-treatment were measured and then CO conversions of those catalysts during WGS reaction were also measured and compared. Drastic overheating of catalyst took place when we reduce catalyst at fixed bed condition and these catalysts showed low CO conversion during WGS reaction. On the contrary, there was no overheating of catalyst at fluidized bed condition not only physical mixing case but also bed insert case. Spring type bed insert showed acceptable CO conversion even at low WGS content. Consequently, feasibility of high CO conversion without decay of reactivity of catalyst and holding the WGS catalyst inside the SEWGS reactor as tablet shape were confirmed using spring type bed insert.

미세조류를 이용한 중온 및 고온 혐기성 수소 발효 (Hydrogen Production from Microalgae in Anaerobic Mesophilic and Thermophilic Conditions)

  • 한선기;최재민;이채영
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.337-343
    • /
    • 2014
  • This study was conducted to evaluate the characteristics of dark fermentative $H_2$ production from microalgae (Chlorella vulgaris) using batch reactors under mesophilic (25, $35^{\circ}C$) and thermophilic (45, $55^{\circ}C$) conditions. The $H_2$ yield and $H_2$ production rate increased with increasing temperature. The maximum $H_2$ yield and $H_2$ production rate were 56.77 mL $H_2/g$ dcw, 3.33 mL $H_2/g\;dcw{\cdot}h$ at $55^{\circ}C$, respectively. The activation energy calculated using Arrhenius equation was 36.24 kcal/mol, which was higher than that of dark $H_2$ fermentation of glucose by anaerobic mixed culture. Although the concentration of butyrate was maintained, the concentrations of lactate and acetate increased with increasing temperature. The $H_2$ yield was linearly proportional to acetate/ butyrate ratio.