• Title/Summary/Keyword: KGS code

Search Result 49, Processing Time 0.025 seconds

The Revolution of Place (종교 場所의 回歸性)

  • 최진성
    • Proceedings of the KGS Conference
    • /
    • 2004.05a
    • /
    • pp.80-80
    • /
    • 2004
  • '장소의 회귀성' 또는 '장소에 대한 관성'은 사회주체들이 바뀔 때마다 특정 장소에 대한 되풀이되는 관심이란 점에서 사회 문화적 현상의 하나라고 할 수 있다. 또한 그 장소는 사회적 구성원들의 이해관계가 반영된 경관들로 구성된다는 점에서 사회문화적 재생산의 과정이라고도 할 수 있다. 이와 같이 사회 문화적 맥락에서 볼 때 장소 회귀성은 경관과 더불어 장소의 의미를 이해하는 지리코드(geographical code)라고 할 수 있으며, 이를 통해 경관의 장소를 해석하는 요소로 삼고자 하였다. (중략)

  • PDF

The Development and Introduction of External Corrosion Direct Assessment Measures for Urban Gas Pipelines (외면부식 직접평가법 개발 및 국내 도입 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Yoon, Yung-Ki;Lim, Ho-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.12-19
    • /
    • 2014
  • To minimize the risk of corrosion on buried pipeline and to maximize the efficiency of cathodic protection, various indirect inspection techniques have been used for decades. In the United States, 49 CFR has regulated the external corrosion direct assessment for buried pipelines. In Korea, there is no provision for external corrosion direct assessment but there is only, according to the KGS Code, provision that if the survey of the defects of buried pipeline and the leakage test for the pipe were conducted, it is deemed to leakage inspection. We, therefore, have suggested external corrosion direct assessment method appropriate to domestic status through the survey of the regulations and standards of UK and the USA and the investigation of domestic situation on coating damage detection method. The proposed external corrosion direct evaluation method was used as the basis when introducing the precision safety diagnosis regulation for the medium-pressure pipe in Korea.

A study on the City-gas Pipeline Management System by Reliability Based Design and Assessment (신뢰도평가 기반 도시가스배관 종합관리시스템 구축 연구)

  • Oh, Dong-Seok;Lee, Jin-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.129-135
    • /
    • 2018
  • For efficiently safety management of city gas pipelines, the City-gas Pipeline Management System(CPMS) has been developed to systematically manage and analyze the data collected from 33 city gas companies and to effectively perform internal and external affairs related to gas safety management. The piping information data uploaded to the CPMS is ranked the risk according to the criteria specified in the KGS Code, and the safety management of the piping has performed close inspection according to the risk ranking. However, the criteria for deriving the risk ranking is very simple and lacks relevant grounds, and the reliability for the determination of the close inspection pipeline is no high due to the redundant rank. Therefore, we developed a risk assessment program based on the Reliability Based Design Assessment(RBDA) methodology and tried to derive a reasonable risk ranking by linking it with the CPMS system.

Current State of Development on Fuel Cell Safety Code (연료전지 안전기준 개발 현황)

  • Choi, Jae Uk;Lee, Jung Woon
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.4
    • /
    • pp.52-61
    • /
    • 2021
  • 2019년 정부의 '수소경제 활성화 로드맵' 발표 후 수소연료전지 보급에 추진 동력원이 되었고, 2020년 2월 '수소경제 육성 및 수소안전관리에 관한 법률'이 세계 최초로 제정되면서 수소연료전지의 안정적인 보급 확산을 견인하고 있다. 수소안전관리에 의한 법률에 의해 수소용품 4종 및 수소사용시설 1종에 대한 KGS Code 3종(수소추출설비, 고정형 연료전지, 수소연료사용시설)이 2021년 7월 제정되었고, 8월 2종(수전해설비, 지게차용 이동형 연료전지)이 추가 제정되어 2022년 2월부터 수소용품 및 시설에 대한 안전관리가 시작된다. 연료전지의 안정적인 보급을 위해서는 국내에 적합한 안전기준 개발이 필수적이다. 또한 신규 출현되는 제품 및 시설의 개발·보급 시기에 맞추어 안전 기준 개발이 병행되어야 할 것이다. 본고에서는 고정형 및 이동형 연료전지의 국내외 안전기준 분석 및 위험요소 분석 등을 통한 연료전지 안전기준 개발 현황을 소개하고자 한다.

Understanding of Subsurface Cavity Mechanism due to the Deterioration of Buried Pipe (노후 매립관로로 인한 지하 공동발생 메카니즘 고찰)

  • Lee, Dae-Young;Cho, Nam-Kak
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.33-43
    • /
    • 2016
  • In order to analyze ground relaxation and cavity formation mechanism due to deteriorated sewer pipe, field test was carried out and a numerical assessments were compared with the field test results. An artificial underground cavity was intended using the ice block overlaying the buried pipe and confirmed that the cavity and relaxation of the surrounding ground were gradually formed as the ice block starts to melt down. Such mechanism was highly suspected to be involved with soil particle interlocking as a soil compaction was a typical process for the buried pipes. In exploring such mechanism numerically, commercially available DEM (Discrete Element Method) code PFC2D was used and the interlocking induced cavern behaviors were successfully simulated and compared with field test results by utilizing the clump logic imbedded in PFC code.

A Study on the Applicability of Amplification Factor to Estimate Peak Ground Acceleration of Pohang Area (국내 내진설계기준의 지반증폭계수를 활용한 포항지역의 지표면 최대가속도 산출 적절성 검토)

  • Kim, Jongkwan;Han, Jin-Tae;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.21-33
    • /
    • 2020
  • Ground response analysis has been conducted for each borehole data in Pohang area, using 1D equivalent linear method program, to investigate the applicability of amplification factor to estimate peak ground acceleration. Earthquake motions for ground response analysis were prepared by matching response spectrums for return period of 500, 1000, and 2400 years suggested by seismic design code (MOIS, 2017). Ground survey data were acquired from Geotechnical Information DB System. It has been confirmed that response spectrum obtained from ground response analysis showed good agreement with those from seismic design code irrespective of ground classification. However, PGA (Peak Ground Accelerations) of ground response analysis did not coincide with PGA calculated using amplification factor suggested by seismic design code.

Modeling Direct Shear Test of Crushed Stone Using DEM (개별요소법을 이용한 쇄석재료의 직접전단시험 모델링)

  • Cho, Nam-Kak;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • In this study, modeling shear characteristics of a coarse material mainly containing crushed stones were implemented using PFC2D, a commercially available code based on DEM(Discrete Element Method). Using the DEM code, this study provides the methodology considering the shear characteristics due to a irregular grain shape, GSD(Grain Size Distribution) and porosity of coarse material which are not effectively incorporated in conventional continuum numerical codes. Direct shear test was simulated for the GSD and porosity generated sample using the code and the simulated results showed very good agreement with the laboratory test results. The current modeling approach can be applied to other coarse materials having various GSD and porosities. Using such application, prediction of the strength characteristics of coarse material in field scale would be possible, which is limited in laboratory scale so far.

Verification of 2-Parameters Site Classification System and Site Coefficients (I) - Comparisons with Well-known Seismic Code and Site Response Characteristics (2-매개변수 지반분류 방법 및 지반 증폭계수의 검증 (I) - 국외 내진설계기준 및 부지응답특성과의 비교)

  • Lee, Sei-Hyun;Sun, Chang-Guk;Ha, Jeong-Gon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.25-34
    • /
    • 2012
  • In order to verify that the recently proposed two-parameters site classification system and the corresponding site coefficients are suitable for the local geological conditions in Korea, a comparison was conducted with current Korean seismic code, Eurocode-8, NYC DOT seismic code. The design spectrum of the current Korean seismic code is significantly amplified in the long-period range, whereas the other response spectra, including the proposed two-parameters approach, are significantly amplified in the short-period range, which is a typical geological condition in Korea. In addition, based on the results of site response analyses in the specific $10km{\times}10km$ area of Gyeongju, spatial distributions of site coefficients from site-specific seismic response analyses were compared with the proposed site coefficients, as well as those specified in the current Korean seismic code. The site coefficients ($F_a$ and $F_v$) from the current Korean seismic codes show significantly high spatial error distributions compared with those specified by the two-parameters site classification system. Therefore, the proposed system is suitable for regions of shallow bedrock including the Korean peninsula.

Numerical Formulation of Consolidation Based on Finite Strain Analysis (대변형 압밀방정식의 수식화)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.77-86
    • /
    • 2013
  • Embankments on soft ground experience significant deformation during time-dependent consolidation settlement, as well as an initial undrained settlement. Since infinitesimal strain theory assumes no configuration change and minute strain during deformation, finite strain analysis is required for better prediction of geotechnical problems involving large strain and geometric change induced by imposed loadings. Updated Lagrangian formulation is developed for time-dependent consolidation combining both force equilibrium and mass conservation of fluid, and mechanical constitutive equation is written in Janumann stress rate. Numerical convergence during Newton's iteration in large deformation analysis is improved by Nagtegaal's approach of considering the effect of rotation in mechanical constitutive relationship. Numerical simulations are conducted to discuss numerical reliability and applicability of developed numerical code: deformation of cantilever beam, two-dimensional consolidation. The numerical results show that developed formulation can efficiently describe large deformation problems. Proposed formulation is expected to facilitate the upgrading of a numerical code based on infinitesimal strain theory to that based on finite strain analysis.

Development of a Numerical Simulator for Methane-hydrate Production (메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.67-75
    • /
    • 2014
  • Methane gas hydrate which is considered energy source for the next generation has an urgent need to develop reliable numerical simulator for coupled THM phenomena in the porous media, to minimize problems arising during the production and optimize production procedures. International collaborations to improve previous numerical codes are in progress, but they still have mismatch in the predicted value and unstable convergence. In this paper, FEM code for fully coupled THM phenomena is developed to analyze methane hydrate dissociation in the porous media. Coupled partial differential equations are derived from four mass balance equations (methane hydrate, soil, water, and hydrate gas), energy balance equation, and force equilibrium equation. Five main variables (displacement, gas saturation, fluid pressure, temperature, and hydrate saturation) are chosen to give higher numerical convergence through trial combinations of variables, and they can analyze the whole region of a phase change in hydrate bearing porous media. The kinetic model is used to predict dissociation of methane hydrate. Developed THM FEM code is applied to the comparative study on a Masuda's laboratory experiment for the hydrate production, and verified for the stability and convergence.