• 제목/요약/키워드: KEPCO system

검색결과 1,667건 처리시간 0.047초

Effect Analysis for Frequency Recovery of 524 MW Energy Storage System for Frequency Regulation by Simulator

  • Lim, Geon-Pyo;Choi, Yo-Han;Park, Chan-Wook;Kim, Soo-Yeol;Chang, Byung-Hoon;Labios, Remund
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.227-232
    • /
    • 2016
  • To test the effectiveness of using an energy storage system for frequency regulation, the Energy New Business Laboratory at KEPCO Research Institute installed a 4 MW energy storage system (ESS) demonstration facility at the Jocheon Substation on Jeju Island. And after the successful completion of demonstration operations, a total of 52 MW ESS for frequency regulation was installed in Seo-Anseong (28 MW, governor-free control) and in Shin-Yongin (24 MW, automatic generation control). The control system used in these two sites was based on the control system developed for the 4 MW ESS demonstration facility. KEPCO recently finished the construction of 184 MW ESS for frequency regulation in 8 locations, (e.g. Shin-Gimjae substation, Shin-Gaeryong substation, etc.) and they are currently being tested for automatic operation. KEPCO plans to construct additional ESS facilities (up to a total of about 500 MW for frequency regulation by 2017), thus, various operational tests would first have to be conducted. The high-speed characteristic of ESS can negatively impact the power system in case the 500 MW ESS is not properly operated. At this stage we need to verify how effectively the 500 MW ESS can regulate frequency. In this paper, the effect of using ESS for frequency regulation on the power system of Korea was studied. Simulations were conducted to determine the effect of using a 524 MW ESS for frequency regulation. Models of the power grid and the ESS were developed to verify the performance of the operation system and its control system. When a high capacity power plant is tripped, a 24 MW ESS supplies power automatically and 4 units of 125MW ESS supply power manually. This study only focuses on transient state analysis. It was verified that 500 MW ESS can regulate system frequency faster and more effectively than conventional power plants. Also, it was verified that time-delayed high speed operations of multiple ESS facilities do not negatively impact power system operations. It is recommended that further testing be conducted for a fleet of multiple ESSs with different capacities distributed over multiple substations (e.g. 16, 24, 28, and 48 MW ESS distributed across 20 substations) because each ESS measures frequency individually. The operation of one ESS facility will differ from the other ESSs within the fleet, and may negatively impact the performance of the others. The following are also recommended: (a) studies wherein all ESSs should be operated in automatic mode; (b) studies on the improvement of individual ESS control; and (c) studies on the reapportionment of all ESS energies within the fleet.

전력계통 안전도 평가 패키지(KW-PSS Ver.2.0) 국산화 개발 (Development of a Power System Assessment Package [KEPCO-WORLD Power System Solution(KW-PSS) Ver.2.0])

  • 신정훈;남수철;백승묵;송지영;이재걸;김태균;곽노홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.154-155
    • /
    • 2011
  • 본 논문에서는 2006년도에 개발된 계통해석 패키지 국산품 (KW-PSS Ver.1.0)에 안전도 평가기능을 추가하여 구현하고, 기존의 조류계산 및 고장계산 모듈을 업그레이드 하여 기존 개발품을 더욱 고급화한 내용을 수록하였다. 그리고, 개발된 알고리즘을 사용자가 손쉽게 사용할 수 있도록 통합 DB 및 플랫폼을 갖춘 사용자 인터페이스를 개발하여 최종적으로는 KW-PSS Ver 2.0이 개발된 내용을 소개한다.

  • PDF

신 배전자동화 시스템의 하드웨어 및 소프트웨어 설계 (The hardware and software design of new distribution automation system)

  • 하복남;한용희;이중호;조남훈;임성일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1428-1430
    • /
    • 1999
  • The New Distribution Automation System(NDAS) was composed of several equipments, computer system, communication system, feeder remote unit, switches and so on. In this paper, we introduce the conception of hardware and software design about Central Control System, the communication method and protocol in Feeder Remote Unit, the Automatic Switch, the operating software, consideration factors in the feeder automation(FA) and the system configuration of NDAS in power distribution test center.

  • PDF

전력계통의 FACTS적용을 위한 직병렬 보상방안 연구 (The Study of Compensation Strategy for FACTS Application in Power System)

  • 이근준;장병훈;김영한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.112-116
    • /
    • 1996
  • This paper presents the study results of FACTS application plan for transmission capability Enhancement. Power transfer across the KEPCO system resulting from a concentration of load in the Kyung-In area are subject to thermal, voltage and stability constrains. In the analysis study of the KEPCO system in 2000 and 2006 year. voltage stability analysis. modal analysis and dynamic stability were simulated by the power system analysis tools(VSTAB, PSS/E).

  • PDF

건물용 독립형 1kW급 PEMFC-배터리 하이브리드 시스템 기술 개발 (Development of Independent 1 kW-class PEMFC-Battery Hybrid System for a Building)

  • 양석란;김중석;최미화
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.113-120
    • /
    • 2019
  • We have developed 1 kW-class PEMFC-battery hybrid system independently powering to the building, through the process of system design, current load characteristics analysis, power system configuration for demonstration site and performance evaluation. In order to use the fuel cell and battery as the hybrid type, a control technology for the charging/discharging decision and charging speed of the battery is required rather than using fuel cell. Also output power distribution between PEMFC and the battery is a core of energy management technology. It is confirmed that it is possible to supply independently 1kW powering the building to ensure optimal energy management through the power control experiment of the hybrid system.

인공지능을 적용한 전력 시스템을 위한 보안 가이드라인 (Guideline on Security Measures and Implementation of Power System Utilizing AI Technology)

  • 최인지;장민해;최문석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.399-404
    • /
    • 2020
  • There are many attempts to apply AI technology to diagnose facilities or improve the work efficiency of the power industry. The emergence of new machine learning technologies, such as deep learning, is accelerating the digital transformation of the power sector. The problem is that traditional power systems face security risks when adopting state-of-the-art AI systems. This adoption has convergence characteristics and reveals new cybersecurity threats and vulnerabilities to the power system. This paper deals with the security measures and implementations of the power system using machine learning. Through building a commercial facility operations forecasting system using machine learning technology utilizing power big data, this paper identifies and addresses security vulnerabilities that must compensated to protect customer information and power system safety. Furthermore, it provides security guidelines by generalizing security measures to be considered when applying AI.

화력발전소용 정지형 여자 시스템 MMI(Man-Machine Interface)에 관한 연구 (A Study of Static Excitation System MMI for Thermal Power Plant)

  • 신만수;류호선;이주현;임익헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1012-1014
    • /
    • 2002
  • This paper shows that a static redundancy excitation system for thermal power plant. The detailed contents are system explanation and MMI(Man-Machine Interface) integration, operation mimic graph.

  • PDF

우리나라 계통의 전압 제어 지역 설정 (A Determination of The Voltage Control Area To KEPCO system)

  • 백승도;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.33-35
    • /
    • 2004
  • The secondary voltage control is the method the pilot bus controls the voltage of the voltage control area sufficiently uncoupled form its neighbours within a area to k slightly influenced by the actions carried out in the other areas. This paper presents the comparison of three methods which determines the voltage control area for the secondary voltage control in power system. Additionally, this paper selects the fitted thing of three methods determining the voltage control area, VSSA, and using it applies the procedure determining the voltage control area to KEPCO system.

  • PDF