• Title/Summary/Keyword: KEPCO System

Search Result 1,667, Processing Time 0.035 seconds

Method of Estimating the Ground-Motion Intensity Measures at a Nearby Site by using the Time-domain Transformation of Site Response (지진파형의 시간영역 부지응답특성 변환을 통한 인접부지의 지진동세기 추정 방법)

  • Yun, Kwan-Hee;Park, Dong-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.219-226
    • /
    • 2010
  • Current earthquake alert notification for immediate post-earthquake procedures for the critical facilities is exclusively dependent on the ground-motion intensity measures observed at the seismic station located within the site. This practice is prune to false notification due to a noise and problems of missing and poor quality records of the seismic station. The credibility of the earthquake alert notification can be enhanced by utilizing the multiple transformed records of the nearby seismic stations at other sites interconnected to the same earthquake monitoring system by a network. The time-domain transformation of the site-response between the seismic stations is implemented by convoluting the nearby records with a pair of forward and inverse FIR filters designed for the site response relative to a seismic basement. The transformed records from the nearby seismic stations can be used to estimate the ground-motion intensity measures missing at the site or to evaluate the data quality along with other various possible applications in the area of geoscience and earthquake engineering.

Status and Perspective of Biomass Co-firing to Pulverized Coal Power Plants (미분탄 석탄화력발전에서의 바이오매스 혼소 동향 및 전망)

  • Yang, Won
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.525-529
    • /
    • 2016
  • Biomass co-firing to existing thermal power plants is one of the most economical and efficient way to reduce $CO_2$ emission from the plant. There are several methods of co-firing and it can be categorized into (1) Parallel co-firing, (2) Indirect co-firing, and (3) Direct co-firing. Parallel co-firing is the most expensive way to high-ratio co-firing because it requires biomass dedicated boiler. Direct co-firing is widely used because it does not need high capital cost compared with the other two methods. Regarding the direct co-firing, it can be classified into three methods- Method 1 does not need retrofit of the facilities because it uses existing coal mills for pulverizing biomass fuels. In this case high-ratio co-firing cannot be achieved because of poor grindability of biomass fuels. Method 2 needs biomass-dedicated mills and revision of fuel streams for the combustion system, and Method 3 needs additional retrofit of the boiler as well as biomass mills. It can achieve highest share of the biomass co-firing compared with other two methods. In Korea, many coal power plants have been adopting Method 1 for coping with RPS(Renewable portfolio standards). Higher co-firing ratio (> 5% thermal share) has not been considered in Korean power plants due to policy of limitation in biomass co-firing for securing REC(Renewable Energy Certificate). On the other hand, higher-share co-firing of biomass is widely used in Europe and US using biomass dedicated mills, following their policy to enhance utilization of renewable energy in those countries. Technical problems which can be caused by increasing share of the biomass in coal power plants are summarized and discussed in this report. $CO_2$ abatement will become more and more critical issues for coal power plants since Paris agreement(2015) and demand of higher share of biomass in the coal power plants will be rapidly increased in Korea as well. Torrefaction of the biomass can be one of the best options because torrefied biomass has higher heating value and grindability than other biomass fuels. Perspective of the biomass torrefaction for co-firing is discussed, and economic feasibility of biomass torrefaction will be crucial for implementation of this technology.

Aerodynamic Characteristics and Galloping Possibility of Ice Accreted Transmission Conductors by Wind Tunnel Tests (풍동실험을 통한 착빙 가공송전선의 공력 특성 측정 및 갤러핑 발생 분석)

  • Lee, Dooyoung;Goo, Jaeryang;Park, Sooman;Kim, Donghwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.79-88
    • /
    • 2017
  • In this paper, the wind tunnel test for the measurement of aerodynamic characteristics of transmission conductors with asymmetric sections is described. A single conductor model and bundled conductor models with ice accreted shapes are tested both in steady and turbulent flow, and the aerodynamic coefficients are acquired. Transmission conductor galloping is a kind of wind-induced vibration which is characterized by primarily vertical oscillation with a very low frequency and a high amplitude. It is well known that transmission conductor galloping is generally caused by moderately strong, steady winds when a transmission conductor has an asymmetric cross-section shaped by accreted ice. Galloping should be considered from the design stage of overhead lines because it can cause severe wear and fatigue damage to attachments as well as transmission conductors. It is reported that there have been normally 20 events of galloping per year in Korea, which may be followed by serious consequences in the electric power system. Therefore, this research is performed to measure aerodynamic characteristics of ice accreted transmission conductors to understand and control transmission conductor galloping so that it would help to prevent unexpected failures and reduce the maintenance costs caused by galloping.

Comparative analysis of cutting performance for basalt and granite according to abrasive waterjet parameters (연마재 워터젯 변수에 따른 현무암 및 화강암 절삭성능 비교분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Jo, Seon-Ah;Jung, Ju-Hwan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.395-409
    • /
    • 2022
  • To overcome the limitation of conventional rock excavation methods, the excavation with abrasive waterjet has been actively developed. The abrasive waterjet excavation method has the effect of reducing blasting vibration and enhancing the excavation efficiency by forming a continuous free surface on the rock. However, the waterjet cutting performance varies with rock fracturing characteristics. Thus, it is necessary to analyze the cutting performance for various rocks in order to effectively utilize the waterjet excavation. In this study, cutting experiments with the high pressure waterjet system were performed for basalt and granite specimens. Water pressure, standoff distance, and traverse speed were determined as effective parameters for the abrasive waterjet cutting. The cutting depth and width of basalt specimens were analyzed to compare with granite results. The averaged cutting depth of basalt was shown in 41% deeper than granite; in addition, the averaged cutting width of basalt was formed by 18.5% narrower than granite. The results of this study are expected to be useful basic data for applying rock excavation site with low strength and high porosity such as basalt.

Uplift Capacity for Bond Type Anchored Foundations in Rock Masses (부착형 암반앵커기초의 인발지지력 평가)

  • Kim, Dae-Hong;Lee, Yong-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.147-160
    • /
    • 2008
  • This paper presents the results of full-scale loading tests performed on 54 passive anchors and 4 group anchored footings grouted to various lengths at several sites in Korea. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, properties of the discontinuities, and the strength of rebar. Anchors in poor quality rocks generally fail along the grout/rock interfaces when their depths are very shallow (a fixed length of less than 1 m). However, even in such poor rocks, we can induce a more favorable mode of rock pull-up failure by increasing the fixed length of the anchors. On the other hand, anchors in good quality rocks show rock pull-up failures with high uplift resistance even when they are embedded at a shallow depth. Laboratory test results revealed that a form of progressive failure usually occurs starting near the upper surface of the grout, and then progresses downward. The ultimate tendon-grout bond strength was measured from $18{\sim}25%$ of unconfined compressive strength of grout. One of the important findings from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for a transmission tower foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Application of Eddy Current Sensor for Measurement of TBM Disc Cutter Wear (TBM 디스크커터의 마모량 측정을 위한 와전류센서의 적용 연구)

  • Min-Sung Park;Min-Seok Ju;Jung-Joo Kim;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.534-546
    • /
    • 2023
  • If the disc cutter is excessively worn or damaged, it becomes incapable of rotating and efficiently cutting rockmass. Therefore, it is important to appropriately manage the replacement cycle of the disc cutter based on its degree of wear. In general, the replacement cycle is determined based on the results of manual inspection. However, the manual measurements has issues related to worker safety and may lead to inaccurate measurement results. For these reasons, some foreign countries are developing the real-time measurement system of disc cutter wear by using different sensors. The ultrasonic sensors, eddy current sensors, magnetic sensors, and others are utilized for measuring the wear amount of disc cutters. In this study, the applicability of eddy current sensors for real-time measurement of wear amount in TBM disc cutters was evaluated. The distance measurement accuracy of the eddy current sensor was assessed through laboratory tests. In particular, the accuracy of eddy-current sensor was evaluated in various environmental conditions within the cutterhead chamber. In addition, the measurement accuracy of the eddy current sensor was validated using a 17-inch disc cutter.

A Comparison Study between Composite and Multiple Single-Segment Profile Control (Profile의 Composite와 Multiple Single-Segment Control의 비교 연구)

  • Kim, Jun-Ho;Chang, Sung-Ho;Ra, Doo-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.1-6
    • /
    • 2016
  • As manufacturing industries become globalized, product design affects every area of organization. The design sets the goals for a number of different departments, so if it fails to effectively communicate these goals, the entire organization is less efficient. In addition, To communicate clearly, the design must represent a product that meets its technical specification. GD&T (Geometric Dimensioning and Tolerancing) is one of the most important factors, which has an effect on efficiency of manufacture system, in designing products. However, most of designers in different industries are prone to ignore the importance of GD&T. To analyse the importance of GD&T compliance with international standards for design drawing, a comparison analysis of the difference between two methods, composite profile control and multiple single segment profile control, is performed on three different cases and suggests how it used to be more suitable. Composite profile tolerance is specified by a dual feature control frame that has one profile symbol specified with two lines of tolerance information. Whereas a multiple single segment profile control is when two or more single segment profile callouts are used to define the location and/or orientation and/or size and/or form of a part feature. In this study, the following results will be provided : a clear definition and an obvious difference of the tolerance zone, datums and datums sequence and minimization of tolerances. On this study, composite profile tolerance and multiple single segment profile tolerance were discussed. Next steps of research will consist on reaching more accurate results for profile control. Further research will be focused on dealing with the remaining 14 symbols of GD&T.

A Study on the Surge Propagation Property of Underground Distribution Cables by Field Tests (지중배전케이블의 서어지 전파특성 실증연구)

  • Lee, Jae-Bong;Kim, Byung-Sook;Park, Chul-Bae;Jung, Yeon-Ha;Han, Byung-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.118-125
    • /
    • 2007
  • The lightning surge and switching surge could be injected to the underground distribution line through the riser pole in the mixed distribution line of overhead and underground. These surges travel along the cable and are reflected at the end of cable. It can be doubled and affecting underground distribution facilities. It was made a underground distribution model representing KEPCO's distribution system. It was measured propagation characteristics by applying lightning surges to this underground distribution model. Meanwhile, this system was simulated with ATP-EMTP and compared these real test results md tuned up the EMTP parameters. EMTP simulation results showed that accord with real test result by adjusting the cable insulation permitivity, arrester characteristics, surge wave shape.

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.

A study on development of screen inspection system to detect damages, bowing, and foreign materials of nuclear fuel assembly for reactor in nuclear power plants (원전 연료집합체의 손상, 변형 및 이물질 검사시스템 개발에 관한 연구)

  • Park, Ki-Tae;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3617-3624
    • /
    • 2013
  • Screen inspection system applied vision and laser scan technology which detect foreign materials caused fuel rod to be damaged, and which inspect fuel rod damage, bowing, distortion and grid damages, was developed to secure reliability and reproductivity of inspection method for nuclear fuel assembly during outage. In further, datum of inspection results will be continuously monitored and given understand the pattern of bowing and distorting for fuel assembly in reactor. Understanding of the pattern will be key technical information to avoid grid demage might be happened during refueling outage and provides important data base for safe operation of nuclear power plant in Korea and world wide.