최근 컴퓨터 네트워크를 활용하는 다양한 기기들이 개발되고 급격히 확산되면서, 컴퓨터 네크워크는 전보다 많은 보안문제에 직면하게 되었다. 이에 따라 네트워크 보안을 위한 침입탐지시스템의 필요성이 대두된다. 침입탐지시스템을 구현하기 위한 대표적인 데이터 셋으로는 KDD CUP 99(KDD'99)와 이후 KDD'99의 문제점을 보완하여 공개된 NSL-KDD가 있다. 본 논문에서는 KDD'99와 NSL-KDD를 소개하고 인공신경망을 통해 두 데이터 셋을 비교 분석하였다. Multi-Layer Perceptron을 사용해 데이터 셋을 분석해본 결과, KDD'99는 전체 정확도에서 더 높은 결과를 얻은 반면 공격 별 탐지 정확도 면에서는 NSL-KDD에 뒤쳐졌다.
본 논문에서는 "퍼지 컨트롤 언어를 이용한 공격 특징 선택기반 네트워크 침입탐지 시스템"[1]과 "RNN을 이용한 공격 분류를 위한 지능형 침입탐지 시스템 모델"[2]의 성능을 비교 하였다. 이 논문에서는 KDD CUP 99 데이터 셋[3]을 이용하여 두 기법의 침입 탐지 성능을 비교하였다. KDD CUP 99 데이터 셋에는 훈련을 위한 데이터 셋과 훈련을 통해 기존의 침입을 탐지 할 수 있는 테스트 데이터 셋이 있다. 또한 훈련 데이터 및 테스트 데이터에 존재 하지 않는 침입의 유형을 탐지할 수 있는가를 테스트 할 수 있는 데이터도 존재한다. 훈련 및 테스트 데이터에서 좋은 침입탐지 성능을 보이는 두 개의 논문을 비교하였다. 비교한 결과 존재하는 침입을 탐지 하는 성능은 우수하지만 기존에 존재하지 않는 침입을 탐지 하는 성능은 부족한 부분이 있다. 공격 유형 중 DoS, Probe, R2L는 퍼지를 이용하는 것이 탐지율이 높았고, U2L은 RNN을 이용하는 것이 탐지율이 높았다.
본 논문에서는 효율적인 침입 탐지를 위해 퍼지 규칙을 이용하는 방법을 제안한다. 제안한 방법은 퍼지 의사결정 트리의 생성을 통해 침입 탐지를 위한 퍼지 규칙을 생성하고 진화 알고리즘을 사용하여 최적화한다. 진화 알고리즘의 효율적인 수행을 위해 지도 군집화를 사용하여 퍼지 규칙을 위한 초기 소속함수를 생성한다. 제안한 방법의 진화 알고리즘은 적합도 평가시 퍼지 규칙(퍼지 의사결정 트리)의 성능과 복잡성을 고려하여 평가한다. 또한 데이타 분할을 이용한 평가와 퍼지 의사결정 트리의 생성과 평가 시간을 줄이는 방법으로 소속정도 캐싱과 zero-pruning을 사용한다. 제안한 방법의 성능 평가를 위해 KDD'99 Cup의 침입 탐지 데이타로 실험하여 기존 방법보다 성능이 향상된 것을 확인하였다. 특히, KDD'99 Cup 우승자에 비해 정확도가 1.54% 향상되고 탐지 비용은 20.8% 절감되었다.
인공지능, 기계학습 및 데이터마이닝 기법들을 침입탐지 시스템에 적용하는 연구가 활발히 진행되고 있다. 그러나 많은 연구가 공격패턴의 분류를 위한 분류기(classifier)의 학습 알고리즘 성능 개선에 목적을 두고 있다. 그리고 이러한 학습 알고리즘은 대부분 일괄처리(batch) 방식으로 동작하여 실시간 침입탐지 시스템의 적용에는 적합하지 못하다. 본 논문에서는 실시간 침입탐지 시스템을 위한 점증적 특징 추출 기법과 분류가 가능한 실시간 침입탐지 시스템을 제안한다. 제안된 방법을 KDD CUP 99 자료에 적용한 결과 실시간 기법임에도 불구하고 일괄처리 방식과 비슷한 결과를 나타내었다.
침입 탐지시스템 (Intrusion Detection System: IDS)은 기존의 수동적인 탐지 기능에서 벗어나, 보다 다양한 형태와 방법론으로 연구되고 있다. 특히, 최근에는 대용량의 시스템 감사 데이터를 빠르게 처리하고 변형된 형태의 공격에 대비한 수 있는 내구력을 가진 형태의 방법론들이 요구되고 있으며, 이러한 조건을 만족하는 데이터마이닝이나 신경망을 이용한 침입 탐지 시스템에 대한 연구가 활발해 지고 있다. 본 논문에서는 우선. 최근의 다양한 형태의 침입경향들을 분석하고, 보다 효과적인 침입탐지를 위한 방안으로 신경망 기반의 역전파 알고리즘을 이용한 침입 탐지 시스템을 설계$.$구현 하였다. 본 연구의 시스템은 비정상행위 탐지(Anomoly Defection)와 오용탐지 (Misuse Detection)의 두 가지 방법론을 모두 수용하는 방법론을 사용하였으며, 신뢰성있는 KDD Cup ‘99의 데이터를 통한 침입패턴의 분석 및 실험을 수행 하였다. 또한 객체지향적인 네트워크 설계를 통하여 역전파 알고리즘 이외의 다른 알고리즘도 쉽게 적용이 가능하도록 하였다.
데이터 속성 값이 연속적이고 애매할 때 퍼지 규칙으로 분류규칙을 표현하는 것은 매우 유용하면서도 효과적이다. 그러나 효과적인 퍼지 분류규칙을 생성하기 위한 소속함수를 결정하기는 어렵다. 본 논문에서는 진화알고리즘을 이용하여 효과적인 퍼지 분류규칙을 자동으로 생성하는 방법을 제안한다. 제안한 방법은 지도 군집화로 클래스 분포에 따라 초기 소속함수를 생성하고, 정확하고 간결한 규칙을 생성할 수 있도록 초기 소속함수를 진화시키는 방법이다. 또한 진화알고리즘의 시간에 대한 효율성을 높이기 위한 방법으로 데이터 분할 평가 진화 방법을 제안한다. 데이터 분할 평가 진화 방법은 전체 학습 데이터를 여러 개의 부분 학습 데이터들로 나누고 개체는 전체 학습 데이터 대신 부분 학습 데이터를 임의로 선택하여 평가하는 방법이다. UCI 벤치마크 데이터로 기존 방법과 비교 실험을 통해 평균적으로 제안한 방법이 효과적임을 보였다. 또한 KDD'99 Cup의 침입탐지 데이터에서 KDD'99 Cup 우승자에 비해 1.54% 향상된 인식률과 20.8% 절감된 탐지비용을 보였고 데이터 분할 평가 진화 방법으로 개체평가 시간을 약 70% 감소시켰다.
네트워크 데이터 분석에 있어서 추정모델이 얼마나 모집단을 대표하느냐는 반드시 연구되어야 한다. 본 논문에서는 네트워크 데이터의 각 추출 가능한 표준 정보를 이용하여 현재 공개되어 사용하고 있는 MIT Lincoln Lab의 네트워크 데이터와 모델링 된 KDD CUP 99 데이터를 비교 분석한다. 비교, 분석에 있어서 두 데이터에 공통으로 포함되고 표준 정보인 프로토콜 정보를 이용하여 분석한다. 분석은 통계적 분석 방법인 대응 분석 방법을 이용하여 분석하고, SVD를 이용해 2차원 공간에 표현하며, 가중 유클리드 거리를 이용해 네트워크 데이터를 수량화하였다.
Machine-learning techniques have been actively employed to information security in recent years. Traditional rule-based security solutions are vulnerable to advanced attacks due to unpredictable behaviors and unknown vulnerabilities. By employing ML techniques, we are able to develop intrusion detection systems (IDS) based on anomaly detection instead of misuse detection. Moreover, threshold issues in anomaly detection can also be resolved through machine-learning. There are very few datasets for network intrusion detection compared to datasets for malicious code. KDD CUP 99 (KDD) is the most widely used dataset for the evaluation of IDS. Numerous studies on ML-based IDS have been using KDD or the upgraded versions of KDD. In this work, we develop an IDS model using CSE-CIC-IDS 2018, a dataset containing the most up-to-date common network attacks. We employ deep-learning techniques and develop a convolutional neural network (CNN) model for CSE-CIC-IDS 2018. We then evaluate its performance comparing with a recurrent neural network (RNN) model. Our experimental results show that the performance of our CNN model is higher than that of the RNN model when applied to CSE-CIC-IDS 2018 dataset. Furthermore, we suggest a way of improving the performance of our model.
International Journal of Computer Science & Network Security
/
제22권5호
/
pp.97-102
/
2022
Network intrusion detection is becoming an increasing necessity for both organizations and individuals alike. Detecting intrusions is one of the major components that aims to prevent information compromise. Automated systems have been put to use due to the voluminous nature of the domain. The major challenge for automated models is the noise and data imbalance components contained in the network transactions. This work proposes an ensemble model, Attribute Subset Selector Bagging (ASUB) that can be used to effectively handle noise and data imbalance. The proposed model performs attribute subset based bag creation, leading to reduction of the influence of the noise factor. The constructed bagging model is heterogeneous in nature, hence leading to effective imbalance handling. Experiments were conducted on the standard intrusion detection datasets KDD CUP 99, Koyoto 2006 and NSL KDD. Results show effective performances, showing the high performance of the model.
최근 네트워크가 발전함에 따라 네트워크의 취약점을 이용한 침입과 공격이 많이 발생하고 있다. 네트워크에서 공격과 침입을 탐지하기 위해 규칙을 만들거나 패턴을 생성하는 것은 매우 어렵다. 대부분 전문가의 경험에 의해서 만들어지고, 많은 인력, 비용, 시간을 소비하고 있다. 본 논문에서는 전문가의 경험 없이 네트워크의 공격 행위를 효과적으로 탐지하기 위해서 네트워크 연결기반의 정보를 이용한 척도선정 기법과 탐지기법을 제안한다. 정상과 각 공격의 네트워크 연결 데이터를 추출하고, 상대 복잡도를 이용하여 복잡도의 임계값 설정함으로써 공격 탐지에 유용한 척도를 선정한다. 그리고 선정된 척도를 바탕으로 확률패턴을 생성하고 우도비 검증을 이용해 공격을 탐지한다. 이 탐지방법으로 임계값 조절에 따라 탐지율과 오탐율을 조절할 수 있었다. KDD CUP 99 데이터를 이용하여 공격행위를 분석, 분류하고, 결정트리 알고리즘의 규칙기반 탐지 결과와 비교함으로써 본 논문에서 제시한 기법이 유용함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.