• Title/Summary/Keyword: KCNJ11

Search Result 7, Processing Time 0.019 seconds

Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation

  • Ahn, Sung Yeon;Kim, Gu-Hwan;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.8
    • /
    • pp.309-312
    • /
    • 2015
  • Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium ($K_{ATP}$) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonylureas close the $K_{ATP}$ channel and increase insulin secretion. KCNJ11 and ABCC8 mutations have important therapeutic implications because sulfonylurea therapy can be effective in treating patients with mutations in the potassium channel subunits. The mutation type, the presence of neurological features, and the duration of diabetes are known to be the major factors affecting the treatment outcome after switching to sulfonylurea therapy. More than 30 mutations in the KCNJ11 gene have been identified. Here, we present our experience with a patient carrying a novel p.H186D heterozygous mutation in the KCNJ11 gene who was successfully treated with oral sulfonylurea.

Neonatal Diabetes Mellitus Due to KCNJ11 (KIR6.2) Mutation Successfully Treated with Sulfonylurea

  • Jang, Sehun;Yang, Misun;Ahn, So Yoon;Sung, Se In;Chang, Yun Sil;Park, Won Soon
    • Neonatal Medicine
    • /
    • v.28 no.2
    • /
    • pp.94-98
    • /
    • 2021
  • Neonatal diabetes mellitus (NDM) is a rare disease that occurs at less than 6 months of age and is presumably caused by a mutation in the gene that affects pancreatic beta-cell function. Approximately 80% of NDM cases reveal a known genetic mutation, and mutations in potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) and ABCC8 affecting the pancreatic beta-cell adenosine triphosphate-sensitive potassium channel may be treated with oral sulfonylurea. Early recognition of mutations in KCNJ11 and ABCC8 is important because early administration of sulfonylurea can not only control blood glucose levels but also improve neurodevelopmental outcomes. In the present study, we report a case of NDM that initially presented as diabetic ketoacidosis at the age of 1 month, accompanied by seizures during hospitalization. After confirmation of the KCNJ11 gene mutation (c.989A>C), we started administering oral sulfonylurea (glimepiride) at the age of 2 months. After gradually increasing the dosage of glimepiride, insulin was discontinued at the age of 3 months. To date, the infant's blood glucose levels have been well controlled without significant hypoglycemic events. No further episodes of seizures have occurred, and his developmental status is favorable.

Expression Pattern of Kir6.2 in Skeletal Muscle Cells of Patients with Familial Hypokalemic Periodic Paralysis (가족성 저칼륨성 주기성마비 환자의 골격근 세포내 Kir6.2의 발현 및 분포 양상)

  • Kim, Sung-Jo;Yoon, Dong-Ho;Kim, June-Bum
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.457-461
    • /
    • 2010
  • Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant disorder characterized by reversible flaccid paralysis and intermittent hypokalemia. Although it has been reported that decreased activity in the $K_{ATP}$ channels of the skeletal muscle cell membrane plays a role in the pathogenesis of HOKPP, a clear mechanism has not yet been established. This study aimed to investigate the molecular biological mechanism underlying the decreased activity of $K_{ATP}$ channels in the skeletal muscles of familial HOKPP patients by studying the levels of the $K_{ATP}$ channel subunit Kir6.2. We found that when cells obtained from healthy individuals (normal cells) and HOKPP patients (patient cells) were treated with 4 mM potassium buffer, there was no quantitative change in the KCNJ11 mRNA levels and no difference in the Kir6.2 protein expression in the cytosol and cell membrane. On the other hand, when 1 mM potassium buffer was used, normal cells showed decreased expression of KCNJ11 mRNA as well as decreased expression of Kir6.2 protein in the cell membrane. However, patient cells treated with the same buffer showed no quantitative change in the levels of KCNJ11 mRNA or in the levels of Kir6.2 protein in the cytosol and cell membrane. Thus, in HOKPP patients, the Kir6.2 protein cannot be transported from the cell membrane to the cytosol, leading to closure of the $K_{ATP}$ channels, induction of depolarization, and subsequently, to the paralytic symptoms observed in the patient. Our findings thus provide new insights into the pathogenesis of HOKPP.

Sulfonylurea therapy in a patient with insulin treated neonatal diabetes due to mutation in Kir6.2 (Kir6.2 유전자변이에 의해 발생한 신생아 당뇨병 1례)

  • Kim, Min Sun;Lee, Dae Yeol;Yoo, Han Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.6 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Permanent neonatal diabetes(PND) is a rare form of diabetes characterized by insulin-requiring hyperglycemia that is diagnosed within the first 3 months of life. In most cases, the causes are not known. Recently, mutations in the gene KCNJ11 encoding the Kir6.2 subunit of the ATP-sensitive K+ charmel have been described in patients with PND. We report a child with PND due to a lysine-to-arginine substitution at position 170(K170R) of gene encoding Kir6.2 Our patient was diagnosed at 7 weeks of age and had been treated with subcutaneous insulin for 6.5 years. Recently, our patient has been changed from subcutaneous insulin to oral glibenclamide therapy at a daily dose of 7.5 mg 3 times a day(0.9 mg/kg/day) at the age of 6.5 years. Before glibenclamide therapy, c-peptide level was 0.1 ng/ml(normal 1.0-3.5 ng/ml) and hemoglobin HbA1c level was 7.8%(normal <6%). After 6 days of treatment, her c-peptide and insulin levels were 2.3 ng/ml and $9.6{\mu}U/ml$(normal $5-25{\mu}U/ml$), respectively. After 1 month later, the insulin and c-peptide levels were in the nonnal range without any episodes of hyper- or hypoglycemia. This case demonstrated that oral sulfonylurea may be the treatment of choice in PND patients with KCNJ11 mutation even at a young age.

  • PDF

A novel mutation of ABCC8 gene in a patient with diazoxide-unresponsive congenital hyperinsulinism

  • Park, Ji Sook;Lee, Hong-Jun;Park, Chan-Hoo
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.116-120
    • /
    • 2016
  • Congenital hyperinsulinism (CHI) is a rare condition that can cause irreversible brain damage during the neonatal period owing to the associated hypoglycemia. Hypoglycemia in CHI occurs secondary to the dysregulation of insulin secretion. CHI has been established as a genetic disorder of islet-cell hyperplasia, associated with a mutation of the ABCC8 or KCNJ11 genes, which encode the sulfonylurea receptor 1 and the inward rectifying potassium channel (Kir6.2) subunit of the ATP-sensitive potassium channel, respectively. We report the case of a female newborn infant who presented with repetitive seizures and episodes of apnea after birth, because of hypoglycemia. Investigations revealed hypoglycemia with hyperinsulinemia, but no ketone bodies, and a low level of free fatty acids. High dose glucose infusion, enteral feeding, and medications could not maintain the patient's serum glucose level. Genetic testing revealed a new variation of ABCC8 mutation. Therefore, we report this case of CHI caused by a novel mutation of ABCC8 in a half-Korean newborn infant with diazoxide-unresponsive hyperinsulinemic hypoglycemia.

Age-dependent expression of ion channel genes in rat

  • Sung-Cherl Jung;Tong Zhou;Eun-A Ko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.85-94
    • /
    • 2023
  • Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.

Elucidation of the Inhibitory Effect of Phytochemicals with Kir6.2 Wild-Type and Mutant Models Associated in Type-1 Diabetes through Molecular Docking Approach

  • Jagadeb, Manaswini;Konkimalla, V. Badireenath;Rath, Surya Narayan;Das, Rohit Pritam
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.283-288
    • /
    • 2014
  • Among all serious diseases globally, diabetes (type 1 and type 2) still poses a major challenge to the world population. Several target proteins have been identified, and the etiology causing diabetes has been reasonably well studied. But, there is still a gap in deciding on the choice of a drug, especially when the target is mutated. Mutations in the KCNJ11 gene, encoding the kir6.2 channel, are reported to be associated with congenital hyperinsulinism, having a major impact in causing type 1 diabetes, and due to the lack of its 3D structure, an attempt has been made to predict the structure of kir6.2, applying fold recognition methods. The current work is intended to investigate the affinity of four phytochemicals namely, curcumin (Curcuma longa), genistein (Genista tinctoria), piperine (Piper nigrum), and pterostilbene (Vitis vinifera) in a normal as well as in a mutant kir6.2 model by adopting a molecular docking methodology. The phytochemicals were docked in both wild and mutated kir6.2 models in two rounds: blind docking followed by ATP-binding pocket-specific docking. From the binding pockets, the common interacting amino acid residues participating strongly within the binding pocket were identified and compared. From the study, we conclude that these phytochemicals have strong affinity in both the normal and mutant kir6.2 model. This work would be helpful for further study of the phytochemicals above for the treatment of type 1 diabetes by targeting the kir6.2 channel.