• 제목/요약/키워드: KARI(Korea Aerospace Research Institute)

검색결과 406건 처리시간 0.029초

GPS Integrity Monitoring Method Using Auxiliary Nonlinear Filters with Log Likelihood Ratio Test Approach

  • Ahn, Jong-Sun;Rosihan, Rosihan;Won, Dae-Hee;Lee, Young-Jae;Nam, Gi-Wook;Heo, Moon-Beom;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.563-572
    • /
    • 2011
  • Reliability is an essential factor in a navigation system. Therefore, an integrity monitoring system is considered one of the most important parts in an avionic navigation system. A fault due to systematic malfunctioning definitely requires integrity reinforcement through systematic analysis. In this paper, we propose a method to detect faults of the GPS signal by using a distributed nonlinear filter based probability test. In order to detect faults, consistency is examined through a likelihood ratio between the main and auxiliary particle filters (PFs). Specifically, the main PF which includes all the measurements and the auxiliary PFs which only do partial measurements are used in the process of consistency testing. Through GPS measurement and the application of the autonomous integrity monitoring system, the current study illustrates the performance of the proposed fault detection algorithm.

Quick Evaluation of Spacecraft Orbit Maneuver Using Small Sets of Real-time GPS Navigation Solutions

  • Lee, Byoung-Sun;Lee, Ho-Jin;Lee, Seong-Pal;Kim, Jong-Ah;Park, Hae-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.458-458
    • /
    • 2000
  • Quick evaluations of two in-plane orbit maneuvers using small see of real-time CPS navigation solutions were peformed lot the KOMPSAT-1 spacecraft operation. Real-time GPS navigation solutions of the KOMPSAT-1 were collected during the Korean Ground Station(KGS) pass. Only a few sets of position and velocity data after completion of the thruster firing were used for the quick maneuver evaluations. The results were used for antenna pointing data predictions for the next station contact. Normal orbit maneuver evaluations using large see of playback GPS navigation solutions were also performed and the result were compared with the quick evaluation results.

  • PDF

Functional and Performance Verification of the Space Weather Sensor on GEO-KOMPSAT-2A Satellite

  • Jin, Kyoungwook
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.645-652
    • /
    • 2020
  • GK2A(GEO-KOMPSAT-2A)satellite has been operating excellently since its launch in Dec 2018. The secondary payload called KSEM (Korean Space Environment Monitor) was equipped into the GK2A satellite along with AMI (Advanced Meteorological Imager) sensor. KSEM is the Korea's first operational geostationary space weather sensor and has been developed collaboratively by KHU (Kyung Hee University) and KARI (Korea Aerospace Research Institute). The interface works between KSEM and GK2A were conducted by KARI. Various interface tests, which aim for evaluating effective functionality of KSEM with the spacecraft, were intensively conducted at KARI facilities. Main tests consisted of mechanical and electrical check-up activities between the KSEM and GK2A. Interface tests of KSEM, which involve pre-launch tests such as ETB and GK2A system level tests, were conducted to evaluate functional and performance of KSEM before the launch. The tests carried out during the GK2A LEOP (Launch and Early Orbit Phase) and IOT (In Orbit Test) period (Dec 2018 ~ June 2019) showed excellent in-orbit performance of KSEM data.

THERMAL SYSTEM DESIGN FOR A LARGE SPACE $SIMULATOR(\Phi8m\;\times\;L10m)$

  • Moon Guee-Won;Cho Chang-Lae;Cho Hyokjin;Lee Sang-Hoon;Seo Hee-Jun;Choi Seok-Weon
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.281-284
    • /
    • 2004
  • According to the National Space Program of Korea, KARI (Korea Aerospace Research Institute) has been developing a large space simulator (working dimension; $\Phi8m\;\times\;L10m$) to verify the performance of future large satellites under the space environment conditions. Especially, a very low temperature condition of space will be simulated by shrouds covering the inside surface of the vessel. The surface of shrouds will be cooled down to 17K by liquid nitrogen (LN2) from ambient temperature and hence, an optimal LN2 circulation system design is necessary to remove gaseous nitrogen (GN2) sufficiently and maintain the shrouds at the LN2 temperature.

  • PDF

정지궤도위성의 광학 관측데이터를 이용한 KARISMA의 정밀궤도결정 결과 분석 (Analysis of Precise Orbit Determination of the KARISMA Using Optical Tracking Data of a Geostationary Satellite)

  • 조동현;김해동;이상철
    • 한국항공우주학회지
    • /
    • 제42권8호
    • /
    • pp.661-673
    • /
    • 2014
  • 본 논문에서는 한국항공우주연구원에서 개발한 우주파편 충돌위험 종합관리 시스템(KARISMA, KARI Collision Risk Management System)의 궤도결정 기능을 이용하여, 정지궤도위성의 광학 관측데이터에 기반한 정밀궤도결정을 수행하였다. 광학 관측데이터로는 정지궤도 위성 ARTEMIS에 대한 유럽우주기구(ESA, European Space Agency)의 실제 광학 관측데이터를 사용하였다. 동일한 관측데이터에 대해 유럽우주기구의 정밀궤도결정 시스템을 통해 얻은 궤도결정 결과와 비교했을 때 약 420 m 정도의 평균 위치오차가 있음을 확인하였다. 또한, 4일간의 광학 관측데이터를 바탕으로 얻은 궤도결정 결과를 이용하여 궤도예측을 수행하였으며, 유럽우주기구의 궤도결정 결과와 비교했을 때 3일 동안 대략 500~600 m 수준의 위치오차를 보였다. 이러한 결과들에 기반하여 KARISMA의 궤도결정 성능이 우주파편 충돌위험 분석을 위해 사용가능한 수준임을 확인할 수 있었다.

실 궤도면 누적량 계산법을 활용한 원자산소의 저궤도위성 태양전지판 코팅재료 침식량 예측 (Prediction of Atomic Oxygen Erosion for Coating Material of LEO Satellite's Solar Array by Using the Real Ram Direction Accumulation Method)

  • 김유광;이상택;백명진;이석훈
    • 항공우주시스템공학회지
    • /
    • 제11권5호
    • /
    • pp.1-5
    • /
    • 2017
  • 본 논문은 실 궤도면 누적량 계산법을 활용한 원자산소의 저궤도위성의 태양전지판 코팅재료 침식량에 대한 예측 연구로써, 기존 프로젝트에서 활용하던 최악 경우 추정법과 상호 비교를 통해 원자산소 영향성의 차이가 있음을 확인하였으며, 이렇게 예측된 결과를 바탕으로 해외 제작사의 설계입증 자료 확인시 활용할 예정이다. 가상으로 설정한 궤도정보를 바탕으로 한 계산은 유럽우주기구(ESA)가 제공하고 있는 우주환경정보시스템을 이용하였고, 실제 궤도상에서의 태양전지판에 충돌되는 원자산소 플럭스를 계산하기 위해서 궤도 계산 소프트웨어를 활용하였다.

Lessons Learned from Korea Pathfinder Lunar Orbiter Flight Dynamics Operations: NASA Deep Space Network Interfaces and Support Levels

  • Young-Joo Song;SeungBum Hong;Dong-Gyu Kim;Jun Bang;Jonghee Bae
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권2호
    • /
    • pp.79-88
    • /
    • 2023
  • On Aug. 4, 2022, at 23:08:48 (UTC), the Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was launched using a SpaceX Falcon 9 launch vehicle. Currently, KPLO is successfully conducting its science mission around the Moon. The National Aeronautics and Space Administration (NASA)'s Deep Space Network (DSN) was utilized for the successful flight operation of KPLO. A great deal of joint effort was made between the Korea Aerospace Research Institute (KARI) and NASA DSN team since the beginning of KPLO ground system design for the success of the mission. The efficient utilization and management of NASA DSN in deep space exploration are critical not only for the spacecraft's telemetry and command but also for tracking the flight dynamics (FD) operation. In this work, the top-level DSN interface architecture, detailed workflows, DSN support levels, and practical lessons learned from the joint team's efforts are presented for KPLO's successful FD operation. Due to the significant joint team's efforts, KPLO is currently performing its mission smoothly in the lunar mission orbit. Through KPLO cooperative operation experience with DSN, a more reliable and efficient partnership is expected not only for Korea's own deep space exploration mission but also for the KARI-NASA DSN joint support on other deep space missions in the future.

Study on the Coverage by COMS OCI FOV

  • Kang C. H.;Seo S. B.;Lim H. S.;Park D. J.;Ahn S. I.;Koo I. H.;Hyun D. H.;Yang H. M.;Choi H. J.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.336-339
    • /
    • 2004
  • Communication, Ocean and Meteorological Satellite (COMS) has been developed by Korean Aerospace Research Institute (KARI) since 2003. Ocean Color Imager (OCI) is the one of COMS payloads, which will monitor the marine environment around Korean peninsula routinely with the intermediate resolution. But considering COMS is to be located in the geostationary orbit, required geographical coverage is not positioned in the nadir direction of COMS but in specific location with horizontal and vertical offsets from the nadir. In this study, coverage by OCI Field Of View (FOV) is analyzed. First of all, OCI is modeled as the sensor which is a $2,500{\times}2,500$ sized 2-D CCD and the pixel resolution is about 500m. And then, OCI is simulated to be controlled to target the required coverage accurately. As a result of it, coverage by OCI FOV is determined. Finally, all coverages by OCI FOV are mapped.

  • PDF