• Title/Summary/Keyword: KARI(Korea Aerospace Research Institute)

Search Result 406, Processing Time 0.024 seconds

RF ENVIRONMENT TEST ON A PROPOSED SITE FOR THE SENSOR STATION OF THE NEXT GENERATION SATELLITE NAVIGATION SYSTEM, GALILEO: I. THE RESULT OF THE TEST ON THE VICINITY OF KVN TAMLA SITE IN THE YEAR OF 2006 BY KASI (차세대 위성항법체계 갈릴레오 센서스테이션 유치 후보지 전파 수신환경 조사: I. KVN 탐라전파천문대 인근 부지에 대한 2006년 한국천문연구원 조사 결과)

  • Jo, Jung-Hyun;Je, Do-Hyeung;Cho, Sung-Ki;Choi, Byung-Kyu;Baek, Jeong-Ho;Lee, Dae-Kyu;Chung, Hyun-Soo;Lim, Hvung-Chul;Cho, Jung-Ho;Lee, Woo-Kyoung;Jung, Sung-Wook;Park, Jong-Uk;Choe, Nam-Mi
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.43-52
    • /
    • 2008
  • As the next generation of global satellite navigation system, the Galileo project is about to witness an initial orbit validation stage as the successful test of navigation message transmission from Giove-A in 2007. The Space Geodesy division ana the Radio Astronomy division of the Korea Astronomy & Space Science Institute had collaborated on the field survey for the Galileo Sensor Station (GSS) RF environment of the proposed site near Jeju Tamla University from August 3rd to August 5th, 2006. The power spectrums were measured in full-band $(800{\sim}2000MHz)$ and in-band (E5, E6 and L1 band) in frequency domain for 24 hours respectively. Finally, we performed a time domain analysis to characterize strong in-band interference source based on the result of the previous step.

Studies of Parallelism and Performance Enhancements of Computing View Factor for Satellite Thermal Analysis (인공위성 열해석을 위한 복사형상계수 계산기법의 병렬화 및 성능향상 기법 연구)

  • Kim, Min-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1079-1088
    • /
    • 2015
  • Parallelism and performance enhancement of calculating view factors in KSDS developed by KARI is introduced in this paper. View factor is an essential parameters of radiation thermal analysis for a spacecraft, and the amount of computation of them is not negligible. Especially, independent integration of view factors at each position of the orbit because the relative displace between solar panel and main body of a satellite varies with the position on the orbit. This paper introduces a range of parallelism of computing view factor and their performance, detection of obstructions by spatial search algorithm based on KD-Tree, and the reduction of the calculation of view factors of a satellite with relative motion between solar panel and main body, called updating fractional view factor matrix, for satellite thermal analysis.

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho;Lee Seoung-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.213-217
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). For teaming the NN, a BPN with one hidden, one input and one output layer was used. The input layer had seven neurons of variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer used 6 neurons of degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network teaming and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF

Hot-Fire Test Facility for Medium-scale Monopropellant Thruster Evaluation (중대형 단일추진제 추력기 성능평가를 위한 진공연소시험설비 개발)

  • Kim, In-Tae;Lee, Jun-Hui;Lee, Jae-Won;Lee, Won-Bok;Kim, Su-Kyum;Chae, Jong-Won;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.336-339
    • /
    • 2011
  • Hot-fire test facility is one of the most important infrastructure for thruster development and evaluation. During the past three years, Korea Aerospace Research Institute (KARI) and Hanwha Corporation have successfully performed the construction of hot-fire test facility for medium-scale monopellant thruster to the maximum 200N thrust level. In general, thruster hot-firing test should be performed in vacuum conditions to simulate space environment. The hot-fire test facility is divided into three subsystems, vacuum system, propellant supply system and data measurement & control system. The goal of this facility is to extend the capability from small thruster for satellite mission to medium-scale thruster for launch vehicle and lunar mission. In this paper, the progress and overview for thruster hot-fire test facility was introduced and test results were also presented.

  • PDF

A Development of Reflector for CAL/VAL of SAR Satellite (SAR 위성 검보정을 위한 반사기 개발)

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.667-676
    • /
    • 2009
  • The payload can be classified as a passive and active type. Generally radar satellite to acquire specific information through various radar images will use the SAR (Synthetic Aperture Radar) as active type payload. the principal of SAR satellite is to receive the signal returned from certain objects and/or surfaces in order to construct an radar image. The data acquired from the satellite in its real orbit shall be needed to perform successful CAL/VAL (Calibration & Validation) because the SAR satellite have to receive the returned signal for SAR image construction. In order to do the above, the returned signal shall be related to ground targets. Especially ground target is the corner reflector (CR) for CAL/VAL. Generally the reflector has various types and shapes. Their selection can be dependent on characteristics and mission objectives of SAR satellite. In this paper, reflector focused on the optimal case and effective case has been studied and then the trihedral corner reflector under this study has been designed and its performance also analyzed.

A Analysis for Calibration Site Selection of SAR Satellite (SAR 위성 검보정 사이트 선택을 위한 분석)

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.659-666
    • /
    • 2009
  • CALVAL (Calibration & Validation) shall consider payloads characteristics because satellites have one and/or several payloads in order to perform their various missions. SAR satellite, one of various satellite, shall need to use special ground targets, which can reflect the radar signal to the satellite, because it can see objects with reflected radar signal. Therefore, the special ground targets, which are called generally reflector(corner reflector is the one of them) shall be installed and constructed on the ground path. The satellite must access the targets on that path. To accomplish successful calibration, the CALVAL site including corner reflectors will be surveyed and analyzed using various environment characteristics. In this paper, CALVAL site including point targets(corner reflector) for absolute radiometric calibration except one including distributed targets for relative radiometric calibration has been deeply considered.

Surface Pressure Measurement on a Rotor Blade using Fast-Responding PSP (고속압력감응페인트를 이용한 로터 블레이드 표면 압력 측정)

  • Kim, Kidong;Kwon, Kijung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The present study was conducted by using fast-responding PSP technique to measure the surface pressure on a small-scale rotor blade in hover. Also, the study was performed to verify the accuracy and investigate its possibility of PSP application for rotor blade pressure measurement. Pulsed laser which has 532 nm wavelength was used as a light source. Lifetime measurement technique was applied. Also, the coated paint on a rotor blade was porous PSP which has faster response time than conventional PSP. The blades had NACA0012 airfoils. The length of rotor blade was 340 mm and chord was 40 mm with rectangular shape 1 set, and 4 sets had several tip sweepback angles. The measured results qualitatively showed that the upper surface pressure decreases with increasing the collective pitch angle. Quantitative pressure coefficients of PSP results were higher approximately 0.4 to 0.7 than the pressure tap data of the NASA experiment.

A Study on Fault Detection of Main Component for Smart UAV Propulsion system (스마트 무인기 추진시스템의 주요 구성품 손상 탐지에 관한 연구)

  • Kong, Chang-Duk;Kim, Ju-Il;Ki, Ja-Young;Kho, Seong-Hee;Choe, In-Soo;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). The measurement parameters of Smart UAV propulsion system are gas generator rotational speed, power turbine rotational speed, exhaust gas temperature and torque. But two measurement such as compressor exit pressure and compressor turbine exit temperature were added because they were difficult each component diagnostics using the default measurement parameter. The performance parameters for the estimate of component performance degradation degree are flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network learning and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF

Development of B-Value Based GBAS Ground Facility Error Standard Deviation Model and Verification (B-Value를 이용한 GBAS 지상국 오차 표준편차 모델 개발 및 성능 평가)

  • Jun, Hyang-Sig;Ahn, Jong-Sun;Lee, Young-Jae;Choi, Young-Kiu;Sung, Sang-Kyung;Yeom, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1232-1237
    • /
    • 2009
  • The ICAO and FAA are developing and verifying of GBAS for civil aircraft landing and take-off. The guarantee of aircraft integrity issue is the important part of GBAS. To guarantee integrity, the GBAS ground facility broadcasts various informations to aircraft. The informations are related to the estimated accuracy of each pseudorange correction and the estimated error terms, for example B-value and standard deviation of the ground facility error. These parameters are used to calculate position error (estimated value of the user). If estimated position errors don't satisfy requirements, aircraft use alternate navigation means. In this paper, GBAS reference stations's real data, which operated by KARI (Korea Aerospace Research Institute) in Jeju international airport, are used to development of new ground facility error standard deviation model. We verify improvement of GBAS availability, with respected to vertical protection level, using B-value based a new ground facility error standard deviation model and a sigma inflation factor.

A STUDY ON THE PRESSURE BEHAVIOR INSIDE PROPELLANT LINE OF SATELLITE (인공위성 연료배관의 유압특성 연구)

  • Choi, Jin-Chul;Kim, Jeong-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.207-214
    • /
    • 2002
  • One of the way to derive design parameters of the fuel feeding system in satellite propulsion system is to analyze unsteady flow of liquid propellant (hydrazine). During steady thruster firing the flow rate is constant: if a thruster valve is abruptly shut down among a set of thrusters, pressure spikes much higher than the initial tank pressure occur. This renders the fuel flow unsteady, and the fluid pressure and flow rate to oscillate. If the pressure spikes are high enough, there are possibilities that propellant explosively decomposes, thruster valves we damaged, and adiabatic detonation of the hydrazine propellant is potentially incurred. Reflected shockwaves could also affect the calibration and operation of the pressure transducers. These necessitate the analysis of unsteady flow in the propulsion system design, and pressure behavior inside the propellant line obtained through some governing parameter variation is presented in this work.