• Title/Summary/Keyword: K-water

Search Result 55,609, Processing Time 0.065 seconds

The Monitoring of Corrosive Water Quality in Water Distribution System by Corrosion Characteristics of Raw and Tap water (원·정수의 부식특성에 따른 상수관망에서의 부식성 수질 모니터링)

  • Bae, Seog-Moon;Kim, Do-Hwan;Son, Hee-Jong;Choi, Dong-Hoon;Kim, Ik-Sung;Kim, Kyung-A
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.907-915
    • /
    • 2015
  • The tap water is generally known to be corrosive in the pH range at 6.5 ~ 7.5. And the degree of corrosion varies depending on the types of raw water such as river surface water or lake water of the dam. Although several corrosion index represents the corrosivity of tap water, the typical corrosion indexes such as Langelier saturation index (LI) and calcium carbonate precipitation potential (CCPP) were calculated to monitoring the corrosive water quality about raw and tap water in water distribution system. To control the corrosive water quality, the correlation between corrosion index and water quality factors were examined. In this study, corrosion index (LI, CCPP) and the pH was found to be most highly correlated.

A study on pollutants removal characteristics of domestic riverbed filtration and riverbank filtration intake facilities (국내 복류수 및 강변여과수 취수시설의 오염물질 제거특성에 관한 연구)

  • Chan-woo Jeong;Sun-ick Lee;Sung-woo Shin;Chang-hyun Song;Bu-geun Jo;Jae-won Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.281-288
    • /
    • 2023
  • This study was performed to evaluate the pollutants removal characteristics of two types of RBFs(Riverbank filtration, Riverbed filtration) intake facilities installed in Nakdong River and in Hwang River respectively. The capacity of each RBF is 45,000 m3/d for riverbank filtration intake facility and 3,500 m3/d for riverbed filtration intake facility. According to data collected in the riverbank filtration site, removal rate of each pollutant was about BOD(Biochemical Oxygen Demand) 52%, TOC(Total Organic Carbon) 57%, SS(Suspended Solids) 44%, Total coliforms 99% correspondingly. Furthermore, Microcystins(-LR,-YR,-RR) were not found in riverbank filtered water compared to surface water in Nakdong River. DOC(Dissolved Organic Carbon) and Humics which are precursors of disinfection byproduct were also reported to be removed about 59% for DOC, 65% for Humics. Based on data analysis in riverbed filtration site in Hwang River, removal rate of each contaminant reaches to BOD 33.3%, TOC 38.5%, SS 38.9%, DOC 22.2%, UV254 21.2%, Total coliforms 73.8% respectively. Additionally, microplastics were also inspected that there was no obvious removal rate in riverbed filtered water compared to surface water in Hwang River.

Evaluation of Spatio-Temporal Water Shortage in Sapgyo Catchment Employing Total Water Right Survey and Water Balance Analysis (수리권 전수조사 및 물수지 분석을 이용한 삽교천 유역의 시·공간적 물부족 평가)

  • Park, Jung Eun;Kim, Young Seok;Kim, Jeongkon;Koh, Deuk Koo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.10
    • /
    • pp.1005-1016
    • /
    • 2013
  • The objective of this study was to evaluate spatio-temporal water shortage distribution in the Sapgyo catchment considering both permitted and non-permitted water rights obtained from the total water right survey conducted in 2010. The results showed that the agricultural water accounted for 98% of the total water uses with 83% being the non-permitted agricultural water uses. During the 11-year (2001~2011) simulation period, water shortage was shown only in the upper Gokgyo stream sub-catchment with the highest water stress from April to May in 2009, particularly because of the large demand for rice cultivation associated with low precipitation. As water shortage was not expected to happen when the permitted water rights were not considered, it was concluded that a proper management of non-permitted water rights would be urgent.

Impact assessment for water pressure and turbidity occurrence by changes in water flow rate of large consumer at water distribution networks (상수도관망에서 대수용가의 유량변화에 따른 수압 및 탁도발생 영향평가)

  • Choi, Doo Yong;Kim, Ju-Hwan;Choi, Min-Ah;Kim, Do-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.277-286
    • /
    • 2014
  • Water discolouration and increased turbidity in the local water service distribution network occurred from hydraulic incidents such as drastic changes of flow and pressure at large consumer. Hydraulic incidents impose extra shear stresses on sediment layers in the network, leading to particle resuspension. Therefore, real time measuring instruments were installed for monitoring the variation of water flow, pressure, turbidity and particulates on a hydrant in front of the inlet point of large apartment complex. In this study, it is attempted to establish a more stable water supply plan and to reduce complaints from customers about water quality in a district metering area. To reduce red or black water, the water flow monitoring and control systems are desperately needed in the point of the larger consumers.

A study of physical and chemical properties of internal accumulated material in water mains (상수관로 내부 오염물질의 물리화학적 특성 분석)

  • Bae, Cheol-Ho;Choi, Doo-Yong;Lee, Doo-Jin;Kim, Do-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.589-600
    • /
    • 2014
  • Tuberculation and slime accumulated in water mains play an important role in modifying water quality of drinking water. Therefore, in this study, it was investigated that what materials were accumulated, and what components were included in the tuberculation and slime of water mains. The Various tuberculation and slime sample were collected from the 12 water mains to analyze their physical and chemical properties and crystal structure. As a analysis method, VSS(Volatile suspended solid), SEM(scanning electron microscope), EDS(Energy Dispersive X-ray spectroscope), ICP(Inductively Coupled Plasma Mass Spectrometer) and XRD(X-Ray Diffractomete) were used. The results of analysis on the samples, the representative materials were verified such as iron corrosion products, the fine sand particles generated during backwash, fine particles of activated carbon, aluminum used in coagulation process, and manganese included in raw water.

Development of Integrated Water Operation System through Engineering Standardization (표준화를 통한 통합형 수(水)운영시스템의 개발)

  • Han, Geung-Jeon;Kim, Jin-Mun;Jeon, Hwa-Sung;Lee, Kyung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.602-609
    • /
    • 2011
  • In this paper, we standardized the water operation system picture, process control logic, realtime database and system configuration. All aspects, including monitoring & controlling processes, symbols such as pumps, valves and pipes were standardized. As a result we have developed a specialized Integrated water operation system, iWater. We have developed a variety of advanced application programs that are essential for water treatment systems, such as IWS (Integrated Warning system), MBO(modbus opc)/LSE(LS ethernet) driver, video monitoring, self diagnosis system, network monitoring, etc. IWS prevents water supply accidents by using a variety of alarms and warning messages. Drivers have the flexibility to communicate with other 3rd party systems. We expect that iWater will eliminate any concerns regarding water-related issues while also promoting the production and fair distribution of clean water.