• Title/Summary/Keyword: K-truss

Search Result 510, Processing Time 0.028 seconds

Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization

  • Lee, Dong-Kyu;Kim, Jin-Ho;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.711-724
    • /
    • 2012
  • The goal of this study is to conceptually orientate optimized layouts of outrigger belt trusses which are in widespread use today in the design of tall buildings by strut-and-tie truss models utilizing a topology optimization method. In this study unknown strut-and-tie models are realized by using a typical SIMP method of topology optimization methods. In tradition strut-and-tie model designs find the appropriate strut-and-tie trusses along force paths with respect to elastic stress distribution, and then engineers or designers determine the most proper truss models by experience and intuition. It is linked to a trial-and-error procedure based on heuristic strategies. The presented strut-and tie model design by using SIMP provides that belt truss models are automatically and robustly produced by optimal layout information of struts-and-ties conforming to force paths without any trial-and-error. Numerical applications are studied to verify that outrigger belt trusses for tall buildings are optimally chosen by the proposed method for both static and dynamic responses.

Structural optimization with teaching-learning-based optimization algorithm

  • Dede, Tayfun;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.495-511
    • /
    • 2013
  • In this paper, a new efficient optimization algorithm called Teaching-Learning-Based Optimization (TLBO) is used for the least weight design of trusses with continuous design variables. The TLBO algorithm is based on the effect of the influence of a teacher on the output of learners in a class. Several truss structures are analyzed to show the efficiency of the TLBO algorithm and the results are compared with those reported in the literature. It is concluded that the TLBO algorithm presented in this study can be effectively used in the weight minimization of truss structures.

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.

Multi-Modal Vibration Control of Truss Structures Using Piezoelectric Actuators (압전작동기를 이용한 트러스 구조물의 다중 모드 진동제어)

  • Ju, Hyeong-Dal;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2502-2512
    • /
    • 2000
  • Truss structures are widely used in many space structures, such as large antenna systems, space stations, precision segmented telescopes because they are light in weight and amenable in assembly or deployment. But, due to the low damping capacity, they remain excited for a long time once disturbed. These structural vibrations can reduce life of the structures and cause unstable dynamic characteristics. In this research, vibration suppression experiment has carried out with a three-dimensional 15-member truss structure using two piezoelectric actuators. Piezoelectric actuators which consist of stacks of thin piezoelectric material disks are directly inserted to the truss structure collocated with the strain sensors. Each actuator is controlled digitally in decentralized manner, based on local integral and proportional feedback. The optimal positions of the actuators are determined by the modal damping ratio and the control force. Numerical simulation has carried out to determine optimal position of each actuator.

Configuration Control of Vaiable-Geometry Truss Structures (가변형상 트러스구조물의 자세제어)

  • Roh, Tae-Hwan;Kim, Tae-Ik;Park, Hyun-Chul;Kwon, Young-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2854-2865
    • /
    • 1996
  • The concept of variable-geometry truss structure(VGTS) is introduced as a class of actively controlled adaptive structure. VGTS can purposefully vary its geometric configurations by changing the lengths of some members of the structure. General kinematics and inverse kinematics of a statically determinate VGTS(variable geometry truss structure) are studied. The solution technique is based on the Jacobian matrix obtained via joint equilibrium equations. Pseudoinverse control method is applied to resolve the redundancy of a large VGTS. two types of actuator layout of octahedral type VGTS, VG truss and Stewart platform, are compared. Introducing the concept of performance index, Stewart platform based layout was found to has less consumption energy and manipulation time. A functional VGTS model with 3 octahedral modules is designed and manufactured for the labaratory demonstration. Six vertically located length-variable members are used to create general 6 d.o.f. motions.

Dynamic Characteristics of the Long Span Truss-Type Lift Gate by Model Test (모형실험에 의한 장지간 트러스형 리프트 게이트의 진동 특성)

  • Lee, Seong Haeng;Hahm, Hyung-Gil;Ryu, Goang Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.117-123
    • /
    • 2015
  • An experimental study of model truss-type vertical gate consisting of a truss and a plate was presented in this paper to examine the structural dynamics of the gates. A 1:61 scale model was constructed for the 95 m prototype gate using an acrylic truss and an acrylonitrile butadiene styrene plate. The scaled model was tested in a 1.6 m wide concrete flume for two orientations to determine the effects of gate orientation on structural vibrations. Natural frequencies of the model gate was measured and calibrated with FEM predictions. Vertical vibrations were measured under various operational conditions, including a range of bottom opening heights and different upstream and downstream water levels. The gate model with reverse direction was preferred due to its low overall vibrational response and flow level combinations. The test results also provide a basic dataset for development of operations guidelines that minimize flow-induced vibrations of the gates.

Influence of Removed Web Members in Shaping Formation for Hypar Space Truss

  • Kim Jin-Woo;Kwon Min-Ho;Lee Yong-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.16-21
    • /
    • 2006
  • This paper discusses the behavior of post-tensioned and shaped hypar space truss, with consideration of the influence of removing some web members. Hypar space truss is post-tensioned at the bottom chords of one diagonal on the ground; the essential behavior characteristic of shape formation is discussed by using a small-scale test model. Results of experiments and nonlinear finite-element analysis indicate that a planar, rectangular- arranged structure can be deformed to a predicted hyper shape, by the proposed shape formation method. Also the feasibility of the proposed method for furnishing of a hypar shaped face truss has been presented, under the condition of both non-removed and partially removed web members. It follows that a nonlinear finite element analysis method can be used in predicting the behavior of the space shape and the post-tensioning force in sharing of hypar space truss. Further, in comparison to the other cases, the results of test and analysis show that the active diagonal shaping in the non-removed web members and passive diagonal shaping of partially removed web members are in relatively good agreement.

The Optimization of Truss Structures with Genetic Algorithms

  • Wu, Houxiao;Luan, Xiaodong;Mu, Zaigen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.117-122
    • /
    • 2005
  • This paper investigated the optimum design of truss structures based on Genetic Algorithms (GA's). With GA's characteristic of running side by side, the overall optimization and feasible operation, the optimum design model of truss structures was established. Elite models were used to assure that the best units of the previous generation had access to the evolution of current generation. Using of non-uniformity mutation brought the obvious mutation at earlier stage and stable mutation in the later stage; this benefited the convergence of units to the best result. In addition, to avoid GA's drawback of converging to local optimization easily, by the limit value of each variable was changed respectively and the genetic operation was performed two times, so the program could work more efficiently and obtained more precise results. Finally, by simulating evolution process of nature biology of a kind self-organize, self-organize, artificial intelligence, this paper established continuous structural optimization model for ten bars cantilever truss, and obtained satisfactory result of optimum design. This paper further explained that structural optimization is practicable with GA's, and provided the theoretic basis for the GA's optimum design of structural engineering.

  • PDF

Effects of local structural damage in a steel truss bridge on internal dynamic coupling and modal damping

  • Yamaguchi, Hiroki;Matsumoto, Yasunao;Yoshioka, Tsutomu
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.523-541
    • /
    • 2015
  • Structural health monitoring of steel truss bridge based on changes in modal properties was investigated in this study. Vibration measurements with five sensors were conducted at an existing Warren truss bridge with partial fractures in diagonal members before and after an emergency repair work. Modal properties identified by the Eigensystem Realization Algorithm showed evidences of increases in modal damping due to the damage in diagonal member. In order to understand the dynamic behavior of the bridge and possible mechanism of those increases in modal damping, theoretical modal analysis was conducted with three dimensional frame models. It was found that vibrations of the main truss could be coupled internally with local vibrations of diagonal members and the degree of coupling could change with structural changes in diagonal members. Additional vibration measurements with fifteen sensors were then conducted so as to understand the consistency of those theoretical findings with the actual dynamic behavior. Modal properties experimentally identified showed that the damping change caused by the damage in diagonal member described above could have occurred in a diagonal-coupled mode. The results in this study imply that damages in diagonal members could be detected from changes in modal damping of diagonal-coupled modes.

Stochastic DLV method for steel truss structures: simulation and experiment

  • An, Yonghui;Ou, Jinping;Li, Jian;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.105-128
    • /
    • 2014
  • The stochastic damage locating vector (SDLV) method has been studied extensively in recent years because of its potential to determine the location of damage in structures without the need for measuring the input excitation. The SDLV method has been shown to be a particularly useful tool for damage localization in steel truss bridges through numerical simulation and experimental validation. However, several issues still need clarification. For example, two methods have been suggested for determining the observation matrix C identified for the structural system; yet little guidance has been provided regarding the conditions under which the respective formulations should be used. Additionally, the specific layout of the sensors to achieve effective performance with the SDLV method and the associated relationship to the specific type of truss structure have yet to be explored. Moreover, how the location of truss members influences the damage localization results should be studied. In this paper, these three issues are first investigated through numerical simulation and subsequently the main results are validated experimentally. The results of this paper provide guidance on the effective use of the SDLV method.